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Applications of Artificial Intelligence 
 

Sebastian Iwanowski 
FH Wedel 

 
Chapter 1: 

Introduction and Survey 
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Prerequesites of knowledge: 
Discrete Mathematics (including applications), Programming I and II 

helpful: Object oriented programming 

 

Targets of this course: 

     Raising interest for AI applications and technology 

Survey knowledge of most AI technologies 

Knowledge of several application fields for AI 

Survey of this course 

Which are the applications and technologies? 

Wait a second … 
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Turing‘s test 

What is AI ? 

A software is intelligent, if a human cannot 
distinguish its behaviour from the behaviour of a 
human. 
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Application: Medical Diagnosis 

Psychoanalysis: Eliza 

Medical Diagnosis: Mycin 

1966: Joseph Weizenbaum, MIT 

Computer performs a psychoanalysis session and acts 
„as one thinks a psychoanalysist would act“. 

1972: University of Stanford 

•  for diagnosis and treatment of infectional deseases 

•  got high hit scores 

•  little acceptance among physicians due to distrust to computers 

•  worked with probabilistic rules 

•  passed Turing‘s test with a lot of people 

•  response rules  

•  built-in language assembler and composer 
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XPS 
 

knowledge base 
(network of rules) 

problem solving component request / 
Input 

answer / 
solution 

expert rules 

Expert System Architecture 

Base Technology: Expert System 

dialog 
component 

knowledge 
acquisition 
component 

dialog 
component 

justifications 
for solution 

explanation 
component 
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Input:  
• Technical system (e.g. car, train) 
• Observations (e.g. measurements, fault codes, 

driver‘s complaint), out of order. 
 
Task:  
Detect,  
• for which reasons the system is out of order 
• exactly enough to recover the proper function of 

the system. 

What is technical diagnosis? 

Application: Technical Diagnosis  
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measure-
ments

knowledge about structure and function: 
specific symptom  specific diagnosis 

1970-1980s: diagnosis = heuristic classification 
Application: Technical Diagnosis  

XPS 
 

knowledge base 
(network of rules) 

problem solving component diagnosis 

dialog 
component 

knowledge 
acquisition 
component 

dialog 
component 

explanation 
component 
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automatic acquisition 
(without experts!) 

component models 
• normal function 
• fault behaviours 

1990s: diagnosis = model-based reasoning 

system 
structure 

local behaviour of 
single parts 

+ 

measure-
ments 

MBR 
 

knowledge base 

problem solving component diagnosis 

dialog 
component 

dialog 
component 

Application: Technical Diagnosis  
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knowledge + problem solving component = KBS 

data processing rules 

KBS 
 

knowledge base 

problem solving component request / 
input 

answer / 
solution 

knowledge 

Architecture KBS 
(joint generalisation of XPS and MBR)  

Base Technology: Knowledge-Based Systems 
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Goals: 

•    Identifying persons of a certain group (gender, appearance, attitude, etc.) 

•    Identifying certain persons if they are in a certain area 

•    Forensic analysis 

Application: Image recognition 

•    Identity control for admission / authorisation 

•    Identifying street signs 

•    Identifying arbitrary objects for certain purposes 

•    … 
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Base Technology: Machine Learning (CBR) 

Knowledge Acquisition Technique: Training by examples 

•    modern method: deep learning 

•    modern method: Support Vector Machines 

1. approach: vector-based using a similarity measure 
•    classical approach already used in the early days of AI 

2. approach: Neural networks 

Machine learning techniques are a current hype due to impressing success stories  

This is why nowadays many people identify AI with Machine Learning 

“Algorithms” in this context are understood the algorithms 
how to adjust the parameters of the neural network from the training samples 

•    Neural network algorithms are purely statistical and have no causal justificatíon 
•    Algorithms investigated in “Algorithmics” do always have a causal justification which can be proven. 

Note! 
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Recent graduation theses supervised by iw: 
Applications using Machine Learning: 

Master thesis Thimo Tollmien: Optimizations of Delay Predictions in Local Public Transport Using Deep Learning, 
                                                 SS 2018 

Bachelor thesis Dennis Maas: Transformation invariant bar code recognition using neural networks, SS 2019 

Bachelor thesis Michel Belde: Improvement of a consulting app for the sales department using image recognition, 
WS 2018/19 

Bachelor thesis Lasse Karls: Graph-based feature extraction to improve machine learning in predicting the 
business affiliation of a Signal Iduna customer, WS 2018/19 

logistics 

sales 

customer maintenance 

traffic advice, big data 

Bachelor thesis Henning Brandt: Implementation of a model for determining the concentration of organic 
molecules in a multicappilar gas chromatograph using machine learning, WS 2019/20 

technical diagnosis 

Master thesis Frederik Schnoege: Einsatz von Natural Language Processing im IT Support, SS 2020 

semantic categorisation 

Master Thesis Shwetha Mohan Kumar: Computation of Delays in the Public Transportation of Hamburg, WS2021/22 
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Application: Passenger Information System 

Task: 
For two points A and B, find the 
shortest path between A and B 
using exclusively segments of the 
traffic network. 

Solution: 
Dijkstra‘s algorithm 
(cf. Discrete Mathematics, ch. 7, graph theory) 

A* algorithm 

Optimisation with further heuristics (e.g. Geofox system für Hamburg Transportation Network) 

Optimisation with preprocessing (e.g. Hafas for German Railways) 

several seminars, projects and graduation 
theses at FH Wedel on routing 
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Application: Passenger Information System 
Passenger information for HVV with smartphones: 

Diploma thesis Sebastian Hammes (eos-uptrade, SS 2010) 

Bachelor thesis Henning Reimer (HBT, SS 2010) 

Development and implementation of actual prototypes: 

• iPhone 

• Android smartphones 

• results used in HVV App 

• results used in Geofox App 

Master thesis Josias Polchau (HBT, SS 2014) 

• Innovation award of Rotary Club Wedel 

Speed-up of routing computation: 

Master thesis Nicolas Mönch: Shortest paths in dynamic graphs, WS 2015/16 

Master thesis Lukas Müller: Hierarchical Algorithms in Public Transport, SS 2018 

Bachelor thesis Christian Binder: Optimisation of a public transport routing algorithm, SS 2017 

This is NOT typical AI ! 
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Mobile passenger assistant: 
A „navigation device“ for public short-distance traffic 

implemented 

Master thesis by Josias Polchau (SS 2014) 

implemented 
implemented 

implemented 

does not contain AI techniques 
as defined in a classical way 

Application: Passenger Information System 

Example for a typical AI solution in this context: 

Master thesis Thimo Tollmien: Optimizations of Delay Predictions in Local Public Transport Using Deep Learning, 
SS 2018 

Master Thesis Shwetha Mohan Kumar: Computation of Delays in the Public Transportation of Hamburg, WS2021/22 

implemented 
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Differences to be considered for adaptation to road networks: 

Application: Road Navigation 

• Road network is much denser. 

• no time-tables or opening hours 

• Traveling time depends very much on traffic density. 

• Traffic devices are not controlled centrally. 
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Ants seeking for food 
Pheromones   

Swarm Intelligence: Pheromone-Based Approach 

Application: Road Navigation 
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Start   Goal   

Obstacle   

Pheromones   
Analogue:

Cars seeking for routes 

Swarm Intelligence: Pheromone-Based Approach 

Application: Road Navigation 
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Base Technology: Swarm Intelligence 

• a lot of small autonomous units, each with limited ability 

• total organism has a higher ability than the sum of the units 
                                                                              (“emergent behaviour”) 

• determined rule system for total organism 

• anytime ability 

Research focus at FH Wedel by iw: 
Several projects, graduation theses and publications since 2006 
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Kasparov 2.5 – Deep Blue 3.5 

First Milestone 1997: 

Further infos: http://www.research.ibm.com/deepblue 

Application: Game AI 

Chess computer (Ex. for a turn-based game) 

http://www.research.ibm.com/deepblue
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Application: Game AI 

• Google‘s Deep Mind developed Alpha Go. 

• Alpha Go used Machine Learning and was trained by experienced Go players. 

• In 2015 Alpha Go beat several world famous Go players. 

Second Milestone 2015: 

Go computer (a much harder turn-based game) 
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Application: Game AI 
Go computer (a much harder turn-based game) 

Third Milestone 2017: 
• In 2017, Deep Mind developed the update version Alpha Go Zero. 

• Alpha Go Zero started by playing against itself and was not trained by humans at all. 

• Within 3 days of continuous training, Alpha Go Zero reached a stage, experienced Go players 
need years for. 

• Alpha Go Zero played 100 matches against Alpha Go and won them all. 

• By now, DeepMind developed improved versions, e.g. AlphaZero which can also play other 
games like chess. 
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Application: Game AI 
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Application: Game AI 

Turn-based game „Catch the fox“ 

• Diploma thesis 2009 at HBT (operator of Geofox) 

• 3. prize of Hochbahn award 

• Computer controls the fox 
which should be caught by human-controlled avatars 

• Game uses real time information of HVV 

• Originally programmed on GoogleMaps, then transferred to licensed map 

• License reasons forced to switch off the online game.  

• A new implementation is only possible with OpenStreetMap. 

Project work possible at HBT 
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Source Age of Empires 2, screenshot of Nils van Kan 

Application: Game AI 

Real-time strategy games 
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• Path finding and location analysis 

• Resource planning 

• Policies and strategies 

Typical AI requirements: 

Real-time strategy games 

Application: Game AI 
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• Construction of search spaces 

• Uninformed search strategies 

 

 

 

• Informed search strategies 

Base Technology: Search Strategies 

- breadth-first search 

- depth-first search 

- combined search Special case: Dijkstra‘s algorithm 

Special case: A* algorithm 

is used in navigation products as well 
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• Pathfinding and terrain analysis in environments changing dynamically 

Requirements in modern games: 

Application: Game AI 

Realtime strategy games 

Algorithmic techniques: 

• Construction of way graph for navigation 

• Learning from suboptimal paths 

• Working with unsafe information 

does not always 
include classical AI 

but is always 
considered Game AI! 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 29 

Application: Traveling Salesman Problem (TSP) 
Master example for an NP-hard problem: 
For a given set of cities with known mutual distances, find the shortest round 
trip passing each city at least once. 

Source: http://www.tsp.gatech.edu//index.html 

http://www.tsp.gatech.edu/concorde/index.html


FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 30 

Generalisations in logistic applications: 

•   considering time restrictions (time windows) 

•   considering load capacities for delivery problems 

•   further system-specific requirements 

Examples for graduation theses in companies: 
        implico: Tour planning for oil and gas delivery (SS 2010, SS 2011, SS 2013) 

Long-term development project: Tourist Information System 

http://vsrv-studprojekt2.fh-wedel.de:8080/touristinformationsystem/home 

Christoph Forster / Thomas Kresalek / Felix Döppers: 
 Master project Hamburg Tourist Information (since 2009) 

Solution of dynamic problems via ant systems 
Example for a graduation thesis in a company: 
      Christopher Blöcker: Dynamic optimisation of tour delivery using an ant system (SS 2011) 

Application: Traveling Salesman Problem (TSP) 
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Application: Class Scheduling 
Given finite sets Courses, Rooms, Time slots 
Task: Generate an injective (one-to-one) function C → RxT 

Strict Constraints (must be fulfilled in any case): 
• Certain courses must not take place at the same time  

• For some courses, certain time slots are not admitted 

• For some courses, certain rooms are not admitted 

Soft constraints (may be violated): 
• Certain courses should not take place at some times 

• Certain courses should take place successively 

• Certain courses should not take place on the same day 

Optimisation function: 
• fewest violations of soft criteria 

• fewest free periods for certain study programmes 

• most uniform distribution on different days for ... 
 Bachelor Thesis Timm Hoffmann: 
Autonomous Planning System for Generating a Timetable for FH Wedel, WS 2013/2014 
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Base Technology: Constraint Satisfaction Problem 
(CSP) 

Specification of a CSP: 
• set of variables 
• domains of definition 
• constraints: relations between variables (strict or soft) 

(nomally, equations and inequalities) 

• optimisation criterion 
(normally, a real-valued function on the variables which has to be minimised or 
maximised ) 

valid solution: 
 assignment of all variables with values such that all strict constraints are satisfied 

optimal solution: 
 valid solution optimising the optimisation criterion 

Manifold application scenarios in various problems of logistics 
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Requirements: 

•    Tourist gets the final control. 

•    Service provider is autonomous and takes responsibility for all information 

•    Independent broking between several providers 

•    Flexible response to requirement changes even during the tour 

•    Fault tolerance for single provider failure 

Application: Tourist Information System  

•    Arbitrary service providers should be subject to be added or withdrawn 
 automatically during system operation. 
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service providers 
service providers are 
autonomous and have own 
terminologies and concepts 

ontology 
Server 

ontology server provide the 
interface between different 
terminologies and concepts 

recomm-
endation 

server 
recommendation server 
responds to composed queries 

Tour Scheduling Server 
composes the tours 

tour 
scheduling 

server

public transport router 

Tourist GUI Server 
administrates individual 
preferences and tours 

tourist 
GUI 

server 

content 
Server 

content server 
provide the interface 
between service 
providers and tour 
planner 

Architecture of tour planning system: prototype of a SOA 

digital map 

trip 
server 

GUI 
trip server 
computes 
paths 
between 
two places 

Application: Tourist Information System  
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Base Technology: Agent-Oriented Software  

Multi-agent system: Software agent: 

autonomous 

social competence 

reactive 

proactive 

object 

 Weitere Infos: Seminarvortrag und Ausarbeitung von Matthias Rohr, SS 2004, Nr. 4, 
 http://www.fh-wedel.de/~si/seminare/ss04/Termine/Themen.html, erreichbar über archiv/iw 
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 Quelle: Seminarvortrag und Ausarbeitung von Matthias Rohr, SS 2004, Nr. 4 

Agent property: Proactivity (goal oriented) 

Agents do not only react to stimuli of the environment, 
but also depend on an internal state and have the 
capibility to pursue own plans and actions. 

=> They are taking initiatives 

 

 environment 

state 

agent 
actions 

rules 

„The difference between an automation and an agent is a somewhat like the difference 
between a dog and a butler. If you send your dog to buy a copy of the New York Times 
every morning, it will come back with its mouth empty if the news stand happens to have 
run out one day. In contrast, the butler will probably take the initiative to buy you a copy 
of the Washington Post, since he knows, that sometimes you read it instead.''  

Le Du 

Base Technology: Agent-Oriented Software  
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•    ontology management 

•    description language 

•    description logics 

Base Technology: Semantic Network  

developed in the 1990s based 
on AI syntax standards of the 
1980s 

Modern adaptation (2001): Semantic Web standards 

Ontology management, description language and description logics 
in XML or comparable standards 

Common feature: 
Universally valid definitions in a syntax readable by engines and browsers 

Initiator: Tim Berners-Lee 
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Definitions from Russell / Norvig 

Defining AI 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 39 

Defining AI 

AI deals with problems which 

• are relevant in practical applications.  

• are NP-hard if they can be specified in a mathematical way.  

• may no be specifiable in a mathematical way.  

Definition iw 
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The classical controversy between different research 
communities in computer science:  

AI vs. Algorithmics  

• flexible solutions  

• human customer oriented solutions

• exact solutions 

• efficient solutions

This need not be contradictory! 

Features of classical AI solutions 
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Intelligent  creatures are able to process very general knowledge: The more 
general, the more intelligent. 

The ability to process general knowledge needs general description 
languages for data and processes. 

The most general description language is the language of 
mathematical logics. 

This is why traditional AI implementations work with logic 
description languages. 

Problems:  • The tasks are usually formulated in a different way.  

• There is a trade-off between generality and efficiency. 

Features of classical AI solutions 
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Base Technology: Logic Programming Language 

• Input: 
Specification of the problem with a logical description language 

• Output: 
Response in a logical description language 

• Automatically (without specifying algorithms!): 
Generation of output from input 

• For improvement of efficiency: 
Different specifications of the problem are possible and may 
influence the output if the automatic generation procedure is well-
understood 
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Summary Chapter 1 

Symbolic AI Statistical AI 

KBS 

Neural 
Networks 

XPS MBR 

CBR 

Machine 
Learning 

Swarm AI Ant 
Systems 

Good applications share several techniques 

The set of AI techniques 

see critique on PM article 
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AI goals for software solutions 
• generality 

• justification of answers 

• flexibility, extensibility 

Tools and methods invented and applied in AI 

• Logic programming languages (PROLOG)  

• Functional programming languages (Lisp)  

• Object-oriented programming languages (Smalltalk) 

• Distributed technology (neural networks, multi-agent-systems, 
               swarm intelligence) 

• Concept descriptions (ontologies) 

Summary Chapter 1 

(only for symbolic AI) 
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Applications of AI:  

• Games where a machine simulates a human player 

• Optimisation problems with dynamic parameters 

• Resource allocation  

• Flexible management of distributed knowledge 

•  Diagnosis 

- Passenger information systems 

- Tourist information system 

- Medical diagnosis 
- Technical diagnosis 

- turn-based 
- real-time 

- Road navigation  
- Logistics (TSP, Scheduling) 

- Allocation problems with manifold constraints (e.g. class schedule, tourist 
information system) 

Summary Chapter 1 
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Base Technologies of AI:  

• Agent oriented software  

• Swarm intelligence  

• Knowledge-based systems (generalisation of expert systems)  

- distributed  

- Separation of knowledge and inference engine 

- distributed  
- autonomous  
- proactive  

- statistic  
- concurrent updating  

- Intelligent knowledge acquition and representation 

- Main focus: Reusability 

Summary Chapter 1 

• Neural networks 
- Special case of knowledge-based systems, but without explanation component 
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• Logic programming languages 

• Search strategies  

• Semantic network  

- Uninformed vs. informed  

- Ontologies: Generation and administration of terminology and concepts 

- What is specified by man 
- How is generated automatically 

• Constraint satisfaction problem (CSP)  
- Search for valid solutions 
- Search for optimal solutions 

Summary Chapter 1 
Base Technologies of AI:  
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Literature 

Stuart Russell / Peter Norvig: 
Artificial Intelligence: A Modern 
Approach, 
Pearson 2010 (3. edition), 
ISBN 0-13-207148-7  

Symbolic AI in general: 

for special fields of AI: 

Wolfgang Ertel / Josef Schneeberger: Grundkurs Künstliche Intelligenz 
Vieweg 2009 (2. Auflage), ISBN 987-3-8348-0783-0 

see my current website and comments 

Günter Görz / Josef Schneeberger / Ute Schmid: 
Handbuch der Künstlichen Intelligenz 
Oldenbourg 2013 (5. Auflage), ISBN 978-3486713077  

Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, MIT Press 2016, 
available via http://www.deeplearningbook.org/ and FH Wedel handout server (via my website) 
Ian Goodfellow, Yoshua Bengio, Aaron Courville: 

Machine Learning: 

http://www.deeplearningbook.org/
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Applications of Artificial Intelligence 
 

Sebastian Iwanowski 
FH Wedel 

 
Chapter 2: 

Logic- and Rule-Based Programming 
Using the Example of Prolog 
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Literature for Prolog 
Textbooks: 

P. Blackburn, J. Bos, K. Striegnitz: Learn Prolog Now!, 
  Texts in Computing Vol. 7, King's College Publications. 2006, ISBN 1-904987-17-6. 
  Companion website with on-line version: www.learnprolognow.org 

Ivan Bratko: PROLOG, Programming for Artificial Intelligence, 
   2nd Edition, Pearson 1990, ISBN 0-201-41606-9 
   3rd Edition, Pearson 2001, ISBN 0-201-40375-6 
   4th Edition, Pearson 2011, ISBN 0-321-41746-6 
   Companion website with Prolog code: www.pearsoned.co.uk/bratko 

Max Rohde: Eignung logischer Programmiersprachen für Spiele-KI am Beispiel Prolog, 
   FH Wedel, Iwanowski, SS 2007, Informatik-Seminar zur Spiele-KI  

Peter Bothner / Wolf-Michael Kähler: Programmieren in PROLOG (in German),      
   Eine umfassende praxisgerechte Einführung, 
   Vieweg 1991, ISBN 3-528-05158-2 

gibt auch einen Überblick über Prolog und enthält weiterführende Literaturliste 

Eignung logischer Programmiersprachen für Spiele

Seminar presentation (in German): 

http://www.learnprolognow.org/
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 Elements of PROLOG 

• atoms 

Elementary components: 

• variables 

• predicates 

• lists 

name where the first character is a small literal 

name where the first character is a capital literal, exception: _ 

terms of the type atom(term), atom(term,term) or ...  
2 predicates are equal, if their name is the same atom and the number of 
parameters is the same. 

[] or [term | list] 
short notation: [1,2,3,4] for [1 |  [2 | [3 | [4 | [] ] ] ] ]  

• numbers 
Integer and real numbers are distinguished (1 ≠ 1.0). 

• terms 
numbers, atoms, variables, lists or expressions like atom(term), atom(term,term) or ... 
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 Elements of PROLOG 

Logic operators between predicates: 

• conjunction 

• implication 

• equivalence 

• antiequivalence (exor) 

a , b corresponds to: a ∧ b 

a :- b corresponds to: b → a 

a = b corresponds to: b ↔ a 

a \= b corresponds to: b ↮ a 

• version-specific operators for comfort 
member, length, ... 
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 Elements of PROLOG 

Arithmetic operators 

• +, -, *, /, div, mod 
Arithmetic expressions are always formed in infix notation. 

Evaluation of arithmetic expressions 

• not automatically! 

• when a variable is assigned an expression 
varname is arithmetic expression 
Result of the arithmetic expression is assigned to the variable. 

• using special logic operators with evaluation capability 

<, =<, > >=. =:=, =\= evaluate arithemtic expressions on either side. 
(in some implementations only on one side) 
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 Elements of PROLOG 

Knowledge in form of clauses 

• facts 

• rules 

predicate. 
Such predicates are assumed to be true in the knowledge base. 

predicate :- conjunction of predicates. 
The concluding predicate (on the left) is considered true 
if the proposition (on the right) has to be assumed true. 
For the same concluding predicate there may be different rules. 

• queries 
?- conjunction of predicates. 
Prolog tries to derive the truth of a query from the known facts and rules. 
If this derivation is successful, the answer is yes and the values 
necessary to bind on a variable for the verification are output. 
Otherwise the answer is no. 
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 Elements of PROLOG 

Prolog’s special handling of not 

• Most versions of Prolog provide a concept for negation 
not Term 
\+ Term 
Term1 =\= Term2 
 
Prolog evaluates these predicates to true if it cannot prove that Term is 
true resp. Term1 = Term2. 

Warning: 
 

This is not the same as that Prolog can prove 
that Term is false resp. Term1  ≠ Term2 

Consequence: 
 

Strict mathematical problem solvers better avoid using negation. 
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 Functionality of a PROLOG interpreter 

PROLOG is knowledge-based: 

• Knowledge base 

• Inference engine 

Facts and rules, dynamically extensible 

• Dialog component 

deriving facts and rules automatically using the inference 
techniques resolution und unification 

Input: Query 
Output: yes / no, Specification of used unification in case of success, write as a 
„side effect“ 
 
Yes:  The predicate of the query can be concluded from knowledge base. 
No:   The predicate of the query cannot be concluded from knowledge base. 
 No does not imply that it can be concluded that the predicate is false. 
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 Functionality of a PROLOG interpreter 

How the inference engine works: 

• Decomposition of a goal into subgoals 
First goal is the original query. 
Prolog tries to achieve the goal with unifications of the predicates of the knowledge base. 
This makes the predicates to subgoals. 

• Order of evaluation 
All data  of the knowledge base are evaluated from top to bottom. 
Conjunctions of rule propositions are evaluated from left to right. 
The evaluation order does not distinguish between facts and rules. 

• Instantiation of variables 
Variables are instantiated with values only for the sake of unification. 
The current instantiation is removed after definite success or failure of unification with this value. 

• Backtracking 
Failure of a unification automatically initiates a new instantiation.  
Deep backtracking: Try the verification with a different value in the proposition for the same rule. 
Shallow Backtracking: Try to verify a different rule implying the same predicate. 
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 PROLOG: Simple example 

father(sven,georg). 
brother(holger,anna). 
married(sven, anna). 
 
male(X) :- father(X,Y). 
male(X) :- brother(X,Y). 
 
uncle(X,Y) :- father(Z,Y), brother(X,Z). 
uncle(X,Y) :- mother(Z,Y), brother(X,Z). 
mother(X,Y) :- father(Z,Y), married(X,Z). 
female(X) :- married(X,Z), male(Z). 
married(X,Y) :- married(Y,X). 

• Predicate world from first semester: 
Knowledge base: 

Queries: 

isMarried(X,Y) :- married(X,Y). 
isMarried(X,Y) :- married(Y,X). 

better: 

?- isMarried(holger,X). 

In ISO-Prolog this does not work! 

Declarative alternative 
without problems with 
symmetric predicates: XSB 
http://xsb.sourceforge.net/ 

?-female(anna). 
?-male(georg). 
?-uncle(holger,georg). 
?-male(X). 
?-married(holger,X). 

http://xsb.sourceforge.net/
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 PROLOG: More complicated example 
• 8 queens problem (1st solution of Bratko) 

Knowledge base: 
queens1([]). 
 
queens1([X/Y | Others]) :- 
   queens1(Others), 
   member(Y,[1,2,3,4,5,6,7,8]), 
   conflictFree(X/Y,Others). 
    
conflictFree(_,[]). 
 
conflictFree(X/Y, [HeadX/HeadY | Others]) :- 
   Y =\= HeadY, 
   DiffY is HeadY - Y, 
   DiffY =\= HeadX - X, 
   DiffY =\= X - HeadX, 
   conflictFree(X/Y,Others). 
    
template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]). 

Query: 
query for a single answer: 
?-template(S), queens1(S). 

not: DiffY =:= HeadY-Y 
not: HeadY - Y =\= HeadX-X 

query for all answers: 
?-template(S), queens1(S), write(S), nl, fail. 
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Base Technology: Logic Programming Language 

• Input: 
Specification of the problem with a logical description language 

• Output: 
Response in a logical description language 

• Automatically (without specifying algorithms!): 
Generation of output from input 

• For improvement of efficiency: 
Different specifications of the problem are possible and may 
influence the output if the automatic generation procedure is well-
understood 
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Original goal: Construction task 
Given a set ℱ of logic formulae. Determine all formulae that can be logically derived from ℱ . 

 

Easier goal: Verification task 
Given a set ℱ of logic formulae and a (new) logic formula F. 
Find out if F can be derived from ℱ . 

Problems equivalent to the verification task: 
1) Given a set ℱ of logic formulae and a (new) formula F. Find out if the set {¬F} ∪ ℱ is 

contradictory. 

2) Given a set ℱ of logic formulae. Find out if it is contradictory. 

Chances to simplify the problem: 
Restrict the class of admissible formulae ! 

not decidable for arbitrary formulae Corresponds to satisfiability problem: 

not decidable for arbitrary formulae 

less than ever not decidable 
for arbitrary formulae 

Task for the interpreter: 

 Logic programming languages 
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 Propositional formulae 

• A propositional formula on truth values is a combination of finitely 
many literals with operators of propositional logics. 

• The instantiation of a formula is an assignment of values true or 
false to all literals such that the same literals achieve the same value. 

• A formula is satisfiable if there is an instantiation such that the 
formula evaluates to true. 

• The literals are variables which may assume exactly one of two values. 

• The satisfiability problem of propositional logics is always solvable 
because there are only finitely many combinations in the potential 
solution space which may be tested successively.  

• Unfortunately, successive testing takes very long time (exponential in the 
number of literals). Until now no more efficient algorithm is known.  

Problem is NP-complete ! 
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 Predicate logics (first order) 

Predicate logics extends propositional logics by the following: 

• predicates 

• functions 

• propositions depending on variables. 
If a proposition depends on k variables, it is called k-ary. 

• unique assignments depending on variables 
(if a function depends on k variables, it is called k-ary) 

• 0-ary functions are constants. 

• quantors 
• existence quantor (∃) und all quantor (∀) 

• Quantors must be applied to variables only (otherwise not first order) 

• variables 
• correspond to the literals of propositional logics, 

but may assume one out of a set of arbitrarily many values 
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 Predicate logics (first order) 

A predicate logic formula (first order) is built by the following rules: 

• A term is a variable or a k-ary function (using any symbol for the 
function name) 

• A formula is a k-ary predicate with arbitrary terms as input or the 
conjunction, disjunction or negation thereof. 

• A formula may also contain quantors applied to variables 

Ex.: formula φ = x ( R(f(y), g(z,y))  y (P(g(y,z), x)  R(y, z)) ) 
Green occurrences of y and z are free.  
Red occurences of variables are bound. 
 

Closed formulae (constants): Formulae not containing any free variable. 

Open formulae (without quantors): Formulae not containing any bound variable. 

Atomic formulae: Formulae consisting of one predicate involving terms only (no 
disjunctions, conjunctions or negations) 
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 Predicate logics (first order) 

• The instantiation of a formula is an assignment of values to the 
free variables from predefined domains of definition such that 
the same variables achieve the same values. 

The general problem is unsolvable ! 

• In predicate logics, the satisfiability problem is not decidable, i.e. no 
algorithm may ever exist to decide for an arbitrary formula as input if 
the formula is satisfiable or not. 

Is there a work-about ? 
Yes, solve a more specific problem ! 

 
• A formula is satisfiable if there is an instantiation such that the 

formula evaluates to true. 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 18 

PROLOG does not accept arbitrary predicate formulae: 

Proposition (Completeness of Horn clause calculus): 
 

For each set of old Horn clauses and a given new Horn clause, Prolog may decide after 
finite time if the new clause can be concluded from the old clauses or not. 

Remark „Finite time“ includes „very long“ ! 

•   no quantors 

p ∧ q ∧ . . . ∧ r → x  

Rule (Horn clause) 

 
 

In the assumption there may be a 
conjunction of positive literals only. 

Power of Prolog 

•   In CNF, all clauses must be Horn clauses: 

¬p ∨ ¬q ∨ . . . ∨ ¬r ∨ x  At most one literal is positive 

•   Domains for variables and functions are arbitrary. 

Rule-based notation of Horn clauses: 
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 Use of Prolog 
Didactic use: 

• good exercise for dealing with formal logics 

• exercising recursive formulations of problems and algorithms 

Practical use: 

• good for a quick test of concepts (rapid prototyping) 

• relatively comfortable for simple problems for which no other solution 
exists than exhaustive search of all possibilities 

• suitable for successive and systematic output of all possible 
solutions of a search problem 

Limits: 
• Rather a toy than a tool of commercial use, too far from practical needs 

• totally useless if efficiency of solution is relevant 
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Applications of Artificial Intelligence 
 

Sebastian Iwanowski 
FH Wedel 

 
Chapter 3: 

Algorithmic Methods of AI 
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Search Strategies  

Relevance of search strategies for knowledge-based systems: 

 All problem solvers search 

KBS 
 

Knowledge Base 

Problem Solver 

The problem solver nearly always has to solve 
a satisfiability problem for constraints of the knowledge base! 

Relevance of search strategies for logic problems: 

Search for a solution of the satisfiability problem 

if the knowledge 
is not case-based 
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 Example for a knowledge-based search engine: 
PROLOG 

PROLOG is knowledge-based: 

• Knowledge base 

• Inference engine („Problem Solver“) 

Facts and rules, dynamically extensible 

• Dialog component 

deriving facts and rules automatically 

Input: Query 
Output: yes / no, specification of unification applied in case of success, 
                            write as a „side effect“ 
 
Yes:  The predicate of the query can be concluded from knowledge base. 
No:   The predicate of the query cannot be concluded from knowledge base. 
 „No“ does not imply that it can be concluded that the predicate is false. 
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Application: Class Scheduling 
Given finite sets Courses, Rooms, Time slots 
Task: Generate an injective (one-to-one) function C → RxT 

Strict Constraints (must be fulfilled in any case): 
• Certain courses must not take place at the same time.  

• For some courses, certain time slots are not admitted. 

• For some courses, certain rooms are not admitted. 

Soft constraints (may be violated): 
• Certain courses should not take place at some times. 

• Certain courses should take place successively. 

• Certain courses should not take place on the same day. 

Optimisation function: 
• fewest violations of soft criteria 

• fewest free periods for certain study programmes 

• most uniform distribution on different days for ... 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 5 

Application: Traveling Salesman Problem (TSP) 
Given: Graph with node set V and weighted edges between the nodes 

Task: Find a round trip traversing the graph edges reaching each node at least once. 

Optimisation function: 
• Minimise the global edge costs ! 

Generalisation in logistic applications: 

Constraints: 
• Only edges of the graph are to be used. 

Constraints: 
• Load and destribute goods obeying capacity restrictions !  
• Consider time windows in which delivery may take place ! 

Soft criteria (may be violated): 
• Certain edges have to be avoided. 

• Certain time windows are unfavourable. 
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Application: Shortest Path Problem 

Task: For two selected nodes S and T, find a path through the graph. 

Generalisation in transport applications (public or individual): 

Constraints: 
• Edge costs depend on the time used. 
• Travelors are subject to individual contraints that may value certain edges in 

a different way or make them even unusable. 

Given: Graph with node set V and weighted edges between the nodes 

Optimisation function: 
• Minimise the global edge costs ! 

Constraints: 
• Only edges of the graph are to be used. 

Soft criteria (may be violated): 
• Certain edges have to be avoided 

• Certain time windows are unfavourable 
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Constraint Satisfaction Problem (CSP) 
Specification of a CSP: 

• set of variables 
• domains of definition 
• constraints: relations between variables (strict or soft) 

(nomally, equations or inequalities) 

• optimisation criterion 
(normally, a real-valued function on the variables which has to be minimised or 
maximised ) 

valid solution: 
 assignment of values to all variables such that all strict constraints are satisfied 

optimal solution: 
 valid solution optimising the optimisation criterion 

Constraint Solvers are programs which find a valid or even optimal 
solution for a given CSP automatically.  
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Traversing search graphs 
1. search method: Find a global solution via partial solutions 

• Node: describes state in search domain 

• Initial node: initial state 

• Edge: transition of a state into a subsequent state 

• Final node: final state wanted (problem solution) 

(is always unique) 

(several ones are admissible) 

(usually feasible in one direction only) 

• State: Assigning values to variables 

• Subsequent state: Assign a value to a new variable 
        keeping the values for the already assigned variables 

• Initial node: No variable has got a value. 

• Final node: All specified variables have got admissible values. 

Each state has got an evaluation. 
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Which node has to be expanded next? 

Different search strategies differ in: 

• Search graph is a search tree 
(makes the path from initial node to each final node unique) 

Special case: 

• Expansion of a node: Compute all subsequent resp. adjacent nodes 

Different search goals are possible: 

1) Find some solution or detect that there is none. 
2) Find further solutions or detect that there are none. 

4) Find an optimal solution or at least a rather good one. 

Traversing search graphs 

3) Find all solutions. 
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1) (2 < x < 4) 

2) (0 < y < 6) 

3) (x + y > 7) 

4) (x ∙ y < 10.5) 

for bounded k: 
• finite search space 

• several valid solutions 

• always 1 optimal solution 

for unbounded k: 

• infinite search space 

• infinitely many valid solutions 

• no optimal solution 

 Example for search trees in CSP 
Constraint system: Domain of definition 

for valid solutions: 
Optimisation 
criterion: 

x,y ∈ Q, 
at most k positions after the decimal point 

Minimise |y – x| 
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 Example for search trees in CSP 

1) (2 < x < 4) 

2) (0 < y < 6) 

3) (x + y > 7) 

4) (x ∙ y < 10.5) 

x,y ∈ Q, 
at most k positions after the decimal point 

Constraint system: Domain of definition 
for valid solutions: 

Optimisation 
criterion: 

Minimise |y – x| 

CSP variables: 
• Assign values to the 8 variables x0 ,x1, x2, x3 and y0 ,y1, y2, y3 
 where x = x0 . x1 x2 x3 and y = y0 . y1 y2 y3 
 and xi and yi are the respective decimal digits (integer numbers between 0 and 9). 

Nodes and successor definitions: 
• Each node in the search network assigns either the same number of digits for 

x as for y with values (type 1) or one digit more for y than for x (type 2). 

• A successor of type 1 is a node of type 2 with the same values as the 
predecessor plus one more value for a digit for y. 

• A successor of type 2 is a node of type 1 with the same values as the 
predecessor plus one more value for a digit for x 
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 Example for search trees in CSP 

1) (2 < x < 4) 

2) (0 < y < 6) 

3) (x + y > 7) 

4) (x ∙ y < 10.5) 

x,y ∈ Q, 
at most k positions after the decimal point 

Constraint system: Domain of definition 
for valid solutions: 

Optimisation 
criterion: 

Minimise |y – x| 

Nodes and successor definitions: 
• Each node in the search network assigns either the same number of digits for 

x as for y with values (type 1) or one digit more for y than for x (type 2). 

• A successor of type 1 is a node of type 2 with the same values as the 
predecessor plus one more value for a digit for y. 

• A successor of type 2 is a node of type 1 with the same values as the 
predecessor plus one more value for a digit for x 

Optimum expansion strategy for this problem: 
• The initial node assigns x0=2, y0=4 (type 1). All other digits are not yet assigned. 

• Expand the initial node and the successors such that you come to the optimal 
solution  (x=2.176, y=4.825) fastest possible. 

depends on 
good luck 
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Uninformed Search Strategies 

In general, only blind (uninformed) search is possible: 

There is no information about good search search directions (the target is only recognised on 
arrival) 

 

 

 

 

 

 

Systematic search strategies: 

1.  breadth first search 

2.  depth first search 

3.  best first search 

Possible expansion strategies: 
• Valid nodes are expanded first. 

• The rightmost valid node on the next level is expanded. 

• ... 
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breadth first search: 

Exponential time and space 

 

for AI search procedures not relevant in most cases  

problem size: depth of search tree 

Uninformed Search Strategies 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 15 

depth first search: 

Exponential time 

Linear space 

The „normal case“ for standard AI procedures 

problem size: depth of search tree 

Uninformed Search Strategies 
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bounded depth first search: 

• Execute depth first search 
only up to limited search 
level. 

• If not successful, increase 
limit for search level and 
start depth first search 
again. 

Uninformed Search Strategies 
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best first search: 

Exponential effort for time and space 

• Additional information: Evaluation label for the nodes. 

• Expand the node with best evaluation first. 

In the worst case this is no better than breadth first search: 

For good evaluation functions, the avarage case is much better! 

Example: Special case „Shortest Path Problem“: 

 Dijkstra‘s algorithm (quadratic effort for time, linear for space) 

For special problems, even the worst case is much better: 

 Mixture of depth first and breadth first searches 

Problem size: 

Depth of search tree 

Problem size: Number of nodes 

• Search target: Find the best solution first (and the others later). 

Uninformed Search Strategies 
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Dijkstra‘s algorithm for weighted graphs 

Requirement for edge weights: All lengths have to be nonnegative. 

(special case of best first search) 

• Put S into the set Done. Label S by distance(S) := 0. 
Put all other nodes into the set YetToCompute. 
Label all neighbors N of S by distance (N) := length (S,N)  
and all other nodes by distance (V) := ∞. 

• Repeat: 
     Choose node V from YetToCompute with minimum distance (V) 
  and shift V to the set Done. 
     Update all neighbors N of V that are still in YetToCompute: 
 distance (N) := min {distance (N),  distance (V) + length (V,N)}.  
until V = T 

Algorithm for the search of a path from S to T having minimal global edge length: 

For all edges (u,v) there is a weight function: 
length (u,v) := length of an edge from node u to node v 

Uninformed Search Strategies 

Proposition: This algorithm expands all nodes with a path length shorter than to T. 
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Example for Dijkstra‘s algorithm 

Shortest path from G to Z: G  E  Z (13 units) 

A(5,G) 
B(2,G) 
C(1,G) 
D(∞) 
E(9,G) 
F(6,G) 
Z(∞) 

A(5,G) 
B(2,G) 

D(∞) 
E(9,G) 
F(6,G) 
Z(14,C) 

A(5,G) 

D(∞) 
E(9,G) 
F(6,G) 
Z(14,C) 

D(∞) 
E(9,G) 

Z(14,C) 

D(14,E) 

Z(13,E) 

D(∞) 
E(9,G) 

Z(14,C) 
F(6,G) 

Node (distance from G, direct predecessor): 
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Informed (Heuristic) Search Strategies 

Distance function h(state) being an estimated measure for the real distance to the target 

• easily computable 

• but accurate enough not to lead the search procedure to the wrong target 

h() provides a nonnegative value: The smaller the value, the closer the target 

Given the following kind of information for weighted graphs: 

Application: „Hill climbing“ 

• Informed add-on to depth first search: 

• Among the possible candidates, expand the node with best heuristic value. 

• In case of backtracking expand the next best node respectively. 

Main problem: Long halt in local maxima 
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Application: Optimistic hill climbing 

• Special case of informed add-on to depth first search 

• Expand only the node with best heuristic value. 

• Backtracking is omitted: If heuristic value was wrong, the best result will not be found. 

Main problem: Getting stuck in local maxima 

Informed (Heuristic) Search Strategies 

Given the following kind of information for weighted graphs: 

Distance function h(state) being an estimated measure for the real distance to the target 

• easily computable 

• but accurate enough not to lead the search procedure to the wrong target 

h() provides a nonnegative value: The smaller the value, the closer the target 
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Application: A* algorithm 

• Informed add-on to best first search 

• Expand the node where the sum of node label plus heuristic function is minimum. 

 Weitere Infos für die Anwendung von A* in öffentlichen Verkehrsnetzen: 
 Seminarvortrag und Ausarbeitung von Stefan Görlich, SS 2005, Nr. 5 
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html 

Informed (Heuristic) Search Strategies 

Given the following kind of information for weighted graphs: 

Distance function h(state) being an estimated measure for the real distance to the target 

• easily computable 

• but accurate enough not to lead the search procedure to the wrong target 

h() provides a nonnegative value: The smaller the value, the closer the target 
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A* algorithm for weighted graphs 

Requirement for edge weights: All edge lengths must be nonnegative. 

(Generalisation of Dijkstra‘s algorithm) 

hT(u) ≤ dT(u)  
Requirement for heuristic function hT(u) for estimating the real distance dT(u) to target node T: 

(State evaluation = Node evaluation)  

Admissibility:  
hT(u) ≤ hT(v) + length(u,v)  Monotonicity:  

Informed (Heuristic) Search Strategies 

• Put S into the set Done. Label S by distance(S) := 0. 
Put all other nodes into the set YetToCompute. 
Label all neighbors N of S by distance (N) := length (S,N) and 
                                              estimatedTotal (N) := distance (N) + hT(N)  
and all other nodes by distance (V) := ∞ and estimatedTotal (V) := ∞. 

• Repeat: 
     Choose node V from YetToCompute with minimum estimatedTotal (V) 
  and shift V to the set Done. 
     Update all neighbors N of V that are still in YetToCompute: 
 distance (N) := min {distance (N),  distance (V) + length (V,N)}. 
          estimatedTotal (N) := distance (N) + hT(N)  (if update is necessary). 
until V = T 

Algorithm for the search of a path from S to T having minimal global edge length: 

Proposition: This algorithm expands all nodes with an estimatedTotal shorter than to T. 
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Example for A* algorithm 

Shortest path from G to Z: G  E  Z (13 units) 

A(5,G,15) 
B(2,G,9) 
C(1,G,5) 
D(∞) 
E(9,G,12) 
F(6,G,13) 
Z(∞) 

Node (real distance from G, direct predecessor, estimated total to target): 

   

10 

7 

8 

5 

4 

3 1 

estimated distance to target Z 

A(5,G,15) 
B(2,G,9) 

D(∞) 
E(9,G,12) 
F(6,G,14) 
Z(14,C,14) 

0 

A(5,G,15) 

D(∞) 
E(9,G,12) 
F(6,G,14) 
Z(14,C,14) 

A(5,G,15) 

D(14,E,15) 

F(6,G,14) 
Z(13,E,13) 
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hB(u) ≤ hB(v) + length(u,v)  What happens if monotonicity is abandoned ? 

Error: D will not be updated anymore because it is already in Done 

Example: 

Aus: Diplomarbeit Andre Keller (SS 2008) 

A* algorithm for weighted graphs 

Requirement for edge weights: All edge lengths must be nonnegative. 

(Generalisation of Dijkstra‘s algorithm) 

hB(u) ≤ dB(u)  
Requirement for heuristic function hB(u) for estimating the real distance dB(u) to target node B: 

Admissability:  

Informed (Heuristic) Search Strategies 
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A* algorithm for weighted graphs 

Requirement for edge weights: All edge lengths must be nonnegative. 

(Generalisation of Dijkstra‘s algorithm) 

hT(u) ≤ dT(u)  
Requirement for heuristic function hT(u) for estimating the real distance dT(u) to target node T: 

(State evaluation = Node evaluation)  

Admissability only:  

Informed (Heuristic) Search Strategies 

• Put S into the set Done. Label S by distance(S) := 0. 
Put all other nodes into the set YetToCompute. 
Label all neighbors N of S by distance (N) := length (S,N) and 
                                              estimatedTotal (N) := distance (N) + hT(N)  
and all other nodes by distance (V) := ∞ and estimatedTotal (V) := ∞. 

• Repeat: 
     Choose node V from YetToCompute with minimum estimatedTotal (V) 
  and shift V to the set Done. 
     Update all neighbors N of V from Done and YetToCompute: 
 distance (N) := min {distance (N),  distance (V) + length (V,N)}. 
          estimatedTotal (N) := distance (N) + hT(N)  (if update is necessary). 
 If an update occurred to a neighbor N* of Done: Shift N* back to YetToCompute 
until V = T 

Algorithm for the search of a path from S to T having minimal global edge length: 
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Pruning search space strategies 

1. Partial Testing 

2. Forward Checking 

• Test constraints having variables only that have already assigned values. 
• States in which some constraints are violated already may not be 

expanded further, but rather traced back. If there are no descendant 
nodes anymore and no solution is found, the inference must trace back. 

• Reduce all domains for variables not assigned such that the future 
assignment still has a chance to be feasible. 

• Trace back if this leads to empty domains. 

For the 1. search method introduced so far: 
  Approaching global solutions via partial solutions: 
Any strategy must backtrack to earlier assignment stages in the search tree 
when no solution can be found with the current assignments. It should be 
avoided to do this only when all assignments have been explicitely performed. 

Strategies for pruning the search space: 
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?-queens2(YList). 

queens2(YList) :- 
   permutation([1,2,3,4,5,6,7,8], YList), 
   admissible(YList). 
    
permutation([],[]). 
permutation([First|Tail],ResultList) :- 
   permutation(Tail,ResultTail), 
   del(First,ResultList,ResultTail). 
    
admissible([]). 
admissible([Y1|Others]) :- 
   admissible(Others), 
   conflictFree(Y1,Others,1). 
    
conflictFree(_,[],_). 
 
conflictFree(Y, [Y1|YTail], XDiff) :- 
   YDiff is Y1-Y, 
   YDiff =\= XDiff, 
   YDiff =\= -XDiff, 
   XDiff1 is XDiff + 1, 
   conflictFree(Y,YTail,XDiff1). 

8-queens-problem (solution by Bratko, 2nd method) 

Example for not pruning at all: 

Query: 
Knowledge base: 

Pruning search space strategies 
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Knowledge base: 
queens1([]). 
 
queens1([X/Y | Others]) :- 
   queens1(Others), 
   member(Y,[1,2,3,4,5,6,7,8]), 
   conflictFree(X/Y,Others). 
    
conflictFree(_,[]). 
 
conflictFree(X/Y, [HeadX/HeadY | Others]) :- 
   Y =\= HeadY, 
   DiffY is HeadY - Y, 
   DiffY =\= HeadX - X, 
   DiffY =\= X - HeadX, 
   conflictFree(X/Y,Others). 
    
template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]). 

8-queens-problem (solution by Bratko, 1st method) 

Example for partial testing: 

Query: 

?- template(S), queens1(S). 

Pruning search space strategies 
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8-queens-problem (solution by Bratko, 3rd method) 

Knowledge base: Query: 

?-queens3(YList). queens3(YList) :- 
   sol(YList, [1,2,3,4,5,6,7,8], 
              [1,2,3,4,5,6,7,8], 
              [-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7], 
              [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]). 
             
sol([],[], DomainY, DomainU, DomainV). 
 
sol([Y |YTail], [X | XTail], DomainY, DomainU, DomainV) :- 
   del(Y,DomainY,ReducedDomainY), 
   U is X - Y, 
   del(U,DomainU,ReducedDomainU), 
   V is X + Y, 
   del(V,DomainV,ReducedDomainV), 
   sol(YTail, XTail, ReducedDomainY, ReducedDomainU, 
ReducedDomainV). 
    
del(Item, [Item|List], List). 
del(Item, [First|Tail],[First|ResultTail]) :- 
   del(Item,Tail,ResultTail). 

Example for forward checking: 
Pruning search space strategies 
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Traversing search graphs 
Alternative 2. search method: 
 Systematic improvement of  preliminary (global) solutions 

• Edge: Transition of a state into an adjacent state 
(usually feasible in both directions) 

• State: Assignment of values to all variables        
(not all of them need be admissible) 

• Adjacent state: New values for certain variables 
                          keeping all values for the other variables 

• Initial node: Start with any assignment to the variables. 

• Final node: No adjacent state has got a better evaluation than the present one. 

Each state has got an evaluation. 

• Node: describes state in search domain 

• Initial node: initial state (is always unique) 

• Final node: final state wanted (problem solution) 
(several ones are admissible) 

(or apply a reasonable starting heuristic) 

(or some heuristic function is achieved) 
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Idea: 

• Start with an arbitrary assignment of values (valid or not). 

• Assign new values for certain variables such that the new assignment bares 
fewer conflicts than the old one. 

Advantages: 

• happens to show good run time behaviour 

• „repair strategy“ if something changes dynamically 

Disadvantages: 

• „Getting stuck“ in local minima  

• counter measures: random walk, tabu list, ... 

Min-Conflicts procedure: 

 Weitere Details zum Thema Constraintsysteme: 
 Seminarvortrag und Ausarbeitung von Stefan Schmidt, SS 2005, Nr. 6, 
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html 

For the 2. search method of systematic improvement: 
General Optimisation Methods for CSP 
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Application: 8-queens-problem 

 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, 
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html 

General Optimisation Methods for CSP 

Min-Conflicts procedure: 
For the 2. search method of systematic improvement: 
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 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, 
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html 

General Optimisation Methods for CSP 

Application: 8-queens-problem 

Min-Conflicts procedure: 
For the 2. search method of systematic improvement: 
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 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, 
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html 

General Optimisation Methods for CSP 

Application: 8-queens-problem 

Min-Conflicts procedure: 
For the 2. search method of systematic improvement: 
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 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, 
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html 

General Optimisation Methods for CSP 

Application: 8-queens-problem 

Min-Conflicts procedure: 
For the 2. search method of systematic improvement: 
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 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, 
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html 

General Optimisation Methods for CSP 

Application: 8-queens-problem 

Min-Conflicts procedure: 
For the 2. search method of systematic improvement: 
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 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, 
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html 

General Optimisation Methods for CSP 

Application: 8-queens-problem 

Min-Conflicts procedure: 
For the 2. search method of systematic improvement: 
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Working with tabu lists in search graphs: 
• Determine a certain validity range for the algorithm, 

e.g. by a given number of operations 

• Protocol all edges used in a transition from one state 
to another 

• All edges used within the previous validity range are 
not to be used again, neither their counterdirection. 

These methods will mainly be used in improvements of global solutions 
• Good results in logistics (TSP generalisations) 

General Optimisation Methods for CSP 

Further enhancement: Simulated annealing 
• Admit temporary deteriorations. 

• Diminish the tolerance bound for deterioration in the course of algorithmic 
progress gradually. 

For the 2. search method of systematic improvement: 
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Applications of Artificial Intelligence 
 

Sebastian Iwanowski 
FH Wedel 

 
Chapter 4: 

Knowledge-Based Systems 
 

4.1: Representation and Classification of Knowledge 
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Representation of knowledge: How ? 

knowledge + problem solver = KBS 

data processing rules 

logic knowledge: 
atoms 

facts 

rules 
if ... then ... 

derivation rules 
resolution, unification 

functional knowledge: 

data functions function evaluation 

object-oriented knowledge: 

objects methods compiler / interpreter 

declarative procedural control knowledge 
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  deep vs. shallow 
 
 
  certain vs. uncertain 
 
 
  exact vs. fuzzy 

Classification of knowledge: What ? 

The following criteria are mutually independent:  

(consider the probability of a statement) 

(consider the accuracy of a statement) 

(consider how a statement is composed of smaller units) 

model-based vs. universally valid 

deterministically vs. probabilistically 

quantitative vs. qualitative 
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• The train comes in 10 minutes. 

 

• The train comes in about 10 minutes. 

 

• The train comes probably in 10 minutes. 

 

• The train comes probably in about 10 minutes. 

 

• The probability that the train comes in 10 minutes is 0.9. 

 

• The plausibility range of the hypothesis that the train comes in 10 minutes is in (0,05; 0,95). 

Classification of knowledge: What ? 

Example for distinguishing probability from accuracy:  

certain, exact  

certain, fuzzy  

uncertain, exact 

uncertain, fuzzy 

uncertain, exact 

uncertain, exact 
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m 

20° 30° 40° 50°    Temp 

m 

20° 30° 40° 50°    Temp 

Fuzzy sets as example for qualitative knowledge 

exact set 

fuzzy set 

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004 

Classification of knowledge: What ? 
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fuzzy set 
Gaussian  

fuzzy set 
trapezoid  

fuzzy set 
triangle  

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004 

Classification of knowledge: What ? 

Fuzzy sets as example for qualitative knowledge 
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The linguistic variable „temperature“  

m

1 

0 
0 100 temperature 

very low low hot very hot medium warm 

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004 

Classification of knowledge: What ? 

Fuzzy sets as example for qualitative knowledge 
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Prinziple of fuzzy technology: 
certain value 

fuzzy set 

fuzzy set 

certain value 

measurement 

setting 

fuzzification 

fuzzy operations 

defuzzification 

Classification of knowledge: What ? 

Fuzzy operations: 
operators for building new sets from old ones 

rules for mapping sets to other sets 

Fuzzy sets as example for qualitative knowledge 
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 µC(x) = min {µA(x), µB(x)} x  X 

 µC(x) = max {µA(x), µB(x)} x  X 

 µC(x) = 1 - µA(x) x  X 

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004 

Examples for fuzzy operators:  

Classification of knowledge: What ? 

Fuzzy sets as example for qualitative knowledge 
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 µC (x) =  min{µA(x), µB(x)} + ½ (1 - )(µA(x) + µB(x))  (  [0,1]) 

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004 

you can have it more complicated:  

What does this function compute ? 

Classification of knowledge: What ? 

Fuzzy sets as example for qualitative knowledge 
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if (distance = small)  
and  (velocity = large),  
then  (braking power = large) 
 
if (distance = medium)  
and  (velocity = large),  
then  (braking power = medium) 
 

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004 

Example for fuzzy rules:  

Classification of knowledge: What ? 

Fuzzy sets as example for qualitative knowledge 
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Allen‘s interval logic for the qualitative representation of time intervals 
 

1. STARTS(t1,t2) 

 t1 starts with t2 but ends before t2  

2. FINISHES(t1,t2) 

  t1 ends with t2 but starts after t2 

3. DURING(t1,t2 ) 

  t2 contains t1 completely 

4. BEFORE(t1,t2 ) 

  t1 starts before t2, and t1 and t2 do not overlap or contain each other 

5. OVERLAP(t1,t2 ) 

  t1 starts before t2 and ends after the start of t2 and before the end of t2 

6. MEETS(t1,t2 ) 

  t1 starts before t2 and ends when t2 starts 

7. EQUAL(t1,t2 ) 

  t1 and t2 denote the same interval 

Classification of knowledge: What ? 
Representation of temporal knowledge 
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Representation of spatial knowledge 

Classification of knowledge: What ? 

exact knowledge about an object 

  geo coordinates in angle and degree (or floating point representation of the angle) 
 
  relative distance of objects in m (with distance between the objects and relative angle)  

qualitative knowledge about an object 

  geo cell in which the object is located 
 
  relative order (in front of, behind, left of, right of, etc.) 
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Practical problem for temporal and spatial knowledge: 

Classification of knowledge: What ? 

How exact should the knowledge be ? 

  year, month, day, hour, second, millisecond, ... 
 
  country, city, address, exact geo coordinates with certain digits, ...  
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Summary: 
knowledge representation and classification 

Various forms of knowledge representation 

Various qualities of knowledge 

• object-oriented: frames, semantic networks 

• logical: production rules 

• functional: constraints 

• deep vs. shallow (consider how a statement is composed of smaller units) 

• certain vs. uncertain (consider the probability of a statement) 

• exact vs. fuzzy (consider the accuracy of a statement) 
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Applications of Artificial Intelligence 
 

Sebastian Iwanowski 
FH Wedel 

 
Chapter 4: 

Knowledge-Based Systems 
 

4.2: Rule-Based Reasoning 
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Run time system: 

Application from practice: Technical diagnosis 

Input: 

Output: 

(knowledge-based systems call this problem solver / inference engine) 

This is where diagnostic systems do not differ ! 

• Setting certain control inputs  
• Observing values depending on this setting 

• A unique instruction how to repair which component 
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Knowledge-based diagnosis: 

1) Knowledge acquisition: Input into knowledge base 

2) Knowledge structure 
• depends on knowledge acquisition 

• model-based 

This is where diagnostic systems may differ ! 

• rule-based (symptom-based)  

• case-based  

3) Knowledge processing be the problem solver 
• depends on knowledge structure 

as alternatives 

Application from practice: Technical diagnosis 
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• Causing and manifest faults for the overall system 

Input to knowledge base: 

• Possible symptoms (measurements)  
• Relations between faults and symptoms (rules) 

- Symptoms may confirm a fault or even explain it. 
- Symptoms may exclude a fault. 

• Semantic network 

• Feasible structures: 

Structure of knowledge base: 

- Fault networks (trees) 
- Decision trees 

This is „classical“ expert system technology 

1. Symptom-Based Diagnosis 

Task of inference engine: 
• Navigation in semantic network  
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Example for elements of the knowledge base: 

Overall System 

Component 1 Component 2 

Fault 1.2 

Fault 1.1 

Fault 2.2 

Fault 2.1 causes 

Symptom 
0≤x≤10 

Symptom 
x>10 

Symptom 
y>10 

consists of consists of 

contains contains 

explains explains excludes 

observation x=3 observation y=20 

Elements for causal inference chain 

1. Symptom-Based Diagnosis 
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Example for a fault tree: 

battery flaw 

engine does not start 

Symptom: 
control lamp 

not lit 

possibly caused by 

starter flaw 

possibly caused by 

battery discharged 

Symptom: 
push-starting works 

explains 

excludes 

... 

loose wire 

possibly caused by possibly caused by 

ignition flaw 

possibly caused by 

possibly caused by 

Symptom: 
starter does 

not click 

explains 

1. Symptom-Based Diagnosis 
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Example for a decision tree: 

Does the starter try 
to start the engine? 

Is the control lamp lit? Does the starter click? 

yes no 

yes no yes no 

1. Symptom-Based Diagnosis 
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• Navigation in semantic network 
(e.g. fault tree or decision tree) 

• Possible start points of navigation: 

• Main task is evaluating and firing of rules: 
- Insert a concluded result of one rule into the antecedent of another rule. 

Job of inference engine: 

- Work with probabilities and fuzzy rules. 

Such input must be allowed for knowledge acquisition.  

- Suspected faults 

- Observed symptoms 

1. Symptom-Based Diagnosis 
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Advantages and Disadvantages:  

• Knowledge structure complies to terminology of experts. 

• Knowledge is stored very goal-oriented. 

- An expert can easily handle the knowledge acquisition component. 
- Knowledge acquisition costs a lot of time. 

- Diagnosis of run time component is fast. 
- Knowledge base may not easily be altered. 
- Reusability is a fundamental problem. 
- There are methods for reusing parts of knowledge though. 

1. Symptom-Based Diagnosis 
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Advantages und Disadvantages:  

- Knowledge base is often not complete. 

• Knowledge base does not contain deep knowledge. 
- Every application domain is feasible in principle. 

- Knowledge base is confusing and is thus not easily verifiable. 

A lot of knowledge bases contain faults.  

1. Symptom-Based Diagnosis 
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FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 2 

• reasonable response time of problem solver at run time 

Challenge: 

3. Model-Based Diagnosis 

Goal: 
• fast knowledge acquisition 
• exact and provable solution of problem solver 
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System model: 
 
Which components of which type are 
connected in which way? 

component model 
• normal behaviour 
• fault behaviour 

Component models: 
 
How do values depend on each other 
lying at ports of the component?  

 available from CAD data 

 to be modeled once per component type 

Model is reusable for all systems containing 
components of this type. 

3. Model-Based Diagnosis 

component port link 
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• system model: hierarchical structure of the system (+ how the components are connected) 

Input to knowledge base: 

• component models  

• constraint network (assembled automatically) 

• structured by: 

Structure of knowledge base: 

- assigning constraints to components and ports 
- assigning variables to components and ports 

3. Model-Based Diagnosis 
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system  
model 

component model 
• normal behaviour 
• fault behaviour 

system 
structure + 

Fault assumption 
is the correct diagnosis. 

simulate 
assuming 

a fault mode 

measurement 

yes consistent? 

no 

revise fault assumption 

knowledge base 

automatically 
knowledge processing: 

Base functionality: Conflict driven search 

3. Model-Based Diagnosis 
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Problem: 
• ‚brute-force‘ Simulation of all fault assumptions  

combinatorically not feasible 
 
Idea: General Diagnostic Engine GDE, deKleer & Williams 1987 
• intelligent  search in the space of all fault assumptions 
• uses inconsistent assumptions for pruning the search space 
• base principle: conflict-driven search 

GDE 1987: The prototype for model-based diagnosis 

3. Model-Based Diagnosis 

Base functionality: Finding consistent assumptions 
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component models 
• multiplier:  mode=ok  out = in1 * in2 
• adder:  mode=ok  out = in1 + in2 

measurements: g = 10  h = 12 

system model 

M1 

M2 

M3 

A1 

A2 

g  

h  
z 

y 

x a = 2 

b = 3 

c = 2 

d = 3 

e = 2 

f = 3 

GDE - Example 
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GDE - Example 

system model 

g = 10  

h = 12  
z 

y 

x a = 2 

b = 3 

c = 2 

d = 3 

e = 2 

f = 3 

A1 

A2 

M1 

M2 

M3 

diagnoses:  
single-fault M1 
single-fault A1 
double fault M2 M3 
   : 

M1   M2   M3   A1   A2 
 x      x              x 
 x               x     x      x 

two conflicts 

simulation

y = 6 {A2 M3} 
h = 10 {M1 A1 A2 M3}, h = 12 

z = 6 {M3} 
y = 6 {M2} 

y = 4 {M1 A1} 
g = 12 {M1 M2 A1}, g =10 

x = 6 {M1} 
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Modeling a simple electric circuit in a first shot 

L1 L2 L3 B 

component types: Battery 
Lamp 
Wire 
Junction (3) 

ports 
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Models of electric components: 

Battery: 

ok ⇒ (minus = ground) 

minus plus 

ok ⇒ (plus = supply voltage) 

a1 a2 
Wire: 

ok ∧ (a1 = ground) ⇒ (a2 = ground) 
ok ∧ (a1 = supply voltage) ⇒ (a2 = supply voltage) 

ok ∧ (a2 = supply voltage) ⇒ (a1 = supply voltage) 
ok ∧ (a2 = ground) ⇒ (a1 = ground) 

minus, plus ∈ { ground, supply voltage } value ranges: 

rules: 

a1, a2 ∈ { ground, supply voltage } value ranges: 

rules: 

Model-Based Diagnosis: Base functionality 
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Lamp: 
a1 a2 z 

ok ∧ (a1 = supply voltage) ∧ (a2 = ground) ⇒ (z = lit) 
ok ∧ (a2 = supply voltage) ∧ (a1 = ground) ⇒ (z = lit) 
ok ∧ (a1 = supply voltage) ∧ (a2 = supply voltage) ⇒ (z = dark) 
ok ∧ (a1 = ground) ∧ (a2 = ground) ⇒ (z = dark) 

ok ∧ (a1 = ground) ∧ (z = dark) ⇒ (a2 = ground) 

ok ∧ (a1 = ground) ∧ (z = lit) ⇒ (a2 = supply voltage) 

ok ∧ (a2 = ground) ∧ (z = lit) ⇒ (a1 = supply voltage) 

ok ∧ (a1 = supply voltage) ∧ (z = lit) ⇒ (a2 = ground) 

ok ∧ (a2 = supply voltage) ∧ (z = lit) ⇒ (a1 = ground) 

ok ∧ (a1 = supply voltage) ∧ (z = dark) ⇒ (a2 = supply voltage) 

ok ∧ (a2 = ground) ∧ (z = dark) ⇒ (a1 = ground) 
ok ∧ (a2 = supply voltage) ∧ (z = dark) ⇒ (a1 = supply voltage) 

a1, a2 ∈ { ground, supply voltage } 

value ranges: 

z ∈ { lit, dark } rules: 

Model-Based Diagnosis: Base functionality 
Models of electric components: 
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Composing the system model from the component models: 
m

in
us

 
pl

us
 a1 a2 a1 a2 a1 a2 

a1 a2 a1 a2 a1 a2 

a1
 

a2
 

z 

a1
 

a2
 

z 

a1
 

a2
 

z L1 L2 L3 B 

Values at connecting ports must be the same from both sides. 
In case of contradiction: Conflict between the behavioural modes predicting the resp. values 
Diagnoses are sets of behavioural modes not containing any conflict. 

Model-Based Diagnosis: Base functionality 
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Model-Based Diagnosis: Base functionality 
Example why the adder/multiplier example does not reveal 
all difficulties for practice: 

L1 L2 L3 B 

Observation: 

GDE diagnoses: 
1. (B ok, L1 faulty, L2 faulty, L3 ok) 

2. (B faulty, L1 ok, L2 ok, L3 faulty) 

L1, L2 are not lit, L3 is lit 

??? 
3. (B faulty, L1 ok, L2 ok, L3 ok) ??? 
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Conclusion from this modeling: 

There is no logic contradiction to the following diagnosis: 
2. (B faulty, L1 ok, L2 ok, L3 faulty) 

Even worse: 
If a behavioural rule is only evaluated when its antecedents 
assume actual values, then no contradiction can be found to the 
following diagnosis: 

Reason: 
L3 may be lit in fault mode even if there is no voltage difference. 

Incomplete knowledge base ! 

3. (B faulty, L1 ok, L2 ok, L3 ok) 

Reason: 
There is no voltage value computed anywhere in the system. 

Incomplete inference ability of the problem solver ! 

Model-Based Diagnosis: Base functionality 
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Additional rules for the exclusion of diagnoses 2 / 3: 

Lamp: 
a1 a2 z 

faulty ∧ (a1 = supply voltage) ∧ (a2 = supply voltage) ⇒ (z = dark) 
faulty ∧ (a1 = ground) ∧ (a2 = ground) ⇒ (z = dark) 

There must be models for faulty behaviour, too, in order to exclude 
diagnoses that are physically impossible. 

Battery: 

faulty ⇒ (minus = ground) 

minus plus 

Model-Based Diagnosis: Base functionality 
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Base functionality: 

• Setting certain control inputs  
Input: 

• Observing values depending on this setting 

Output: 
• Several diagnoses of the following kind: 

What does the user need ? 

Input: see above 

Output: • A unique instruction how to repair which component 

- Jeach diagnosis assigns a behavioural mode to each component: 
ok or a defined fault mode 

- The rules of all behavioural modes assigned agree with all set and 
observed values. 

 

Model-Based Diagnosis: Extended functionality 
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Extended functionality: 

• Setting certain values at certain places in the system  

1) Suggestion of setting certain control inputs 

(such that the observations to be expected differ such that the 
diagnoses valid so far may be distinguished best) 

2) Suggestion of observation points 
• Selecting observation points  

(such that the observations to be expected differ such that 
the diagnoses valid so far may be distinguished best) 

Test 

Requirement for the modeling: 
• Definition of test points 

• Definition of test values to be set at the test points 

• Definition of observation points to be measured  

Control 
actions 

Observations 

Model-Based Diagnosis: Extended functionality 
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Modeling the components in a proper way 
Behavioural modes 

Variables 

Ports 

• containing values 
• The variable values are used in the constraints. 
• The constraints compute new values for other variables. 

• containing variables to be identified at the connections 
to adjacent components 

Distinguish 
internal variables 
from port variables ! 

Control actions Observations 

• modes of the component to be searched for in the diagnostic process 

Constraints 
• set of behavioural rules connecting the variables of the same component 
• Normally, a constraint is only valid under the assumption of 

a certain behavioural mode. 

• Domain of definition must be finite (normall less than 10 values) 

• variables and values to be set • variables 

• measure of accessibility and the difficulty to 
set certain values. 

• measure for accessibility 
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Modeling a simple electric circuit in a proper way 

L1 L2 L3 B 

component types: Battery 
Lamp 
Wire 
Junction (3) 

ports 
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Battery fault modes: 
+ 

_ 

discharged 

contact gap at + 

contact gap at - 

loose contact at + 

loose contact at - 

corroded 

control actions: open connector at + 

open connector at - 

close connector at + 

close connector at - 

observations: 
measure voltage at + 

measure voltage at - 

inspect connectors 

Modeling a simple electric circuit 

ports: +, - 

constraints: 
cf. slides 10, 15 
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Lamp 
a1 

a2 

fault modes: 

control actions: remove lamp 

insert lamp 

observations: inspect lamp 

broken 

shorted to ground 

shorted to voltage 

corroded 

Wire fault modes: 

observations: 

control actions: 

a1 a2 

inspect wire 

measure voltage at a1 

measure voltage at a2 

blown 

loose contact 

lamp is not inserted 

corroded 

Modeling a simple electric circuit 

ports: a1, a2 

constraints: 
cf. slides 11, 15 

internal variables: z 

z 

ports: a1, a2 

constraints: 
cf. slides 10 
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Junction (3) 

fault modes: 

control actions: 

observations: inspect contacts 

a1 

a2 

a3 

contact gap at a1 

loose contact at a1 

contact gap at a2 

contact gap at a3 

loose contact at a2 

loose contact at a3 

close contact at a1 

close contact at a2 

close contact at a3 

open contact at a1 

open contact at a2 

open contact at a3 

Modeling a simple electric circuit 

ports: a1, a2, a3 

constraints: 
exercise 

(related to wires) 
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Knowledge-Based Systems 
 

4.3: Model-Based Reasoning 
Details 
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Model-Based Diagnosis (MDS) 
Terminology of the GDE approach: 
Component: 

Unit of which behaviour should be classified („diagnosed“) 

Behavioural mode: 
represents a specific behaviour of all components of that type 

usually enumerated from 1 to n 

Component type: 
collects components of same behaviour 

usually enumerated from 1 to k: 
1 represents ok 
2 thru k are the fault modes (ordered by probability) 

(Diagnosis) Candidate: 
Assignment of exactly one behavioural mode to each component of the system 
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Model-Based Diagnosis (MDS) 
Terminology of the GDE approach: 
Candidate: 

(2 1 3 1 1 2 1) means: Component Nr. 1 is in behavioural mode 2 
Component Nr. 2 is in behavioural mode 1 
Component Nr. 3 is in behavioural mode 3 
Component Nr. 4 is in behavioural mode 1 
Component Nr. 5 is in behavioural mode 1 
Component Nr. 6 is in behavioural mode 2 
Component Nr. 7 is in behavioural mode 1 

Conflict: 
Assignment of exactly one behavioural mode to some components of the system 

(0 1 0 0 0 2 0) means: Component Nr. 2 is in behavioural mode 1 
Component Nr. 6 is in behavioural mode 2 
About the other components no proposition is made. 

Interpretation:  It is not consistent that component 2 is in behavioural mode 1 and 
  und component 6 is in behavioural mode 2. 
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Model-Based Diagnosis (MDS) 
Terminology of the GDE approach: 
Diagnosis (= consistent candidate): 

Candidate not containing any conflict 
Examples: (2 1 3 1 1 2 1) contains the conflict (0 1 0 0 0 2 0), i.e., it is not a diagnosis. 

If (0 1 0 0 0 2 0) is the only conflict, then (1 1 1 1 1 1 1) is a diagnosis. 
If (0 1 0 0 0 2 0) and (1 1 0 0 0 0 0) are the only conflicts, then (1 2 1 1 1 1 1) 
is a diagnosis 

Preference between candidates: 
A candidate A is preferred to another candidate B, if A assigns at most the number 
of the behavioural mode of B for each component. 
Example: (1 1 1 1 1 1 1) is preferred to (1 2 1 1 1 1 1) 

Maximum preferred diagnosis: 
A diagnosis is called a maximum preferred diagnosis, if all preferred candidates 
contain conflicts, i.e. the diagnosis is maximum with respect to the preference relation. 

If (0 1 0 0 0 2 0) and (1 1 0 0 0 0 0) are the conflicts, then (1 2 1 1 1 1 1) and 
(2 1 1 1 1 1 1) are the only two maximum preferred diagnoses. 

Example: 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 5 

Model-Based Diagnosis (MDS) 
Goal of MDS (Daimler enhancement of the GDE): 
1) Base functionality: Find the best diagnoses 

2) Extended functionality: Repair instruction: 
Propose actions and tests in order to distinguish between diagnoses 
found in 1) 

Details of 1): Find the maximum preferred diagnoses. 
If there are too many maximum preferred diagnoses, 
the focus should be restricted to the most probable ones 
among all maximum preferred diagnoses. 
The remaining maximum preferred diagnoses are to be 
marked as pending and may be inserted into focus at a later 
time. 

Possible focus restriction policies (may be combined): 

a) Determine a maximum number of focus diagnoses 

b) Determine a probability threshold for the gap between 
focus diagnoses and pending diagnoses. 
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Model-Based Diagnosis (MDS) 
Algorithm for finding the most probable maximum preferred diagnoses 
(Problem 1): 

1. Update the focus candidates: Initialise with 11….1. 
At later stages, pending candidates may be dragged into focus. 

2. Generate and propagate all values resulting from behavioural 
modes of candidates in focus. 

3. Find the minimal conflicts from the propagated values. 

4. Exclude the candidates containing conflicts and compute new 
maximum preferred candidates not containing any conflict.  

5. If focus is sufficiently large, the goal is achieved. 
Otherwise continue with 1. 

focus update 

In reality, steps 2 thru 4 are implemented concurrently. 
(achieved by event oriented programming) 
In the following, the methods for candidate generation and conflict generation are described 
separately. 

value propagation 

conflict generation 

candidate generation 

focus test 

diagnoses 

At any time, all candidates of the focus are maximum preferred. 

no 
con- 
flict 

conflicts 
found 

Diagnostic cycle 
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INPUT: 
• Old conflicts and all maximum preferred und consistent 

diagnoses for these conflicts 

• New conflicts 

OUTPUT: 
• Set of maximum preferred candidates being consistent 

for the new conflicts, too 

MDS: Candidate generation 

Embedding the candidate generation into the diagnostic process: 
• Output of candidate generation will be taken as input in the next diagnostic cycle. 

• Value propagation may find new conflicts. 

• New conflicts may kick out diagnoses from focus. 

• If no new conflicts are found, the diagnostic process is finished. 
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111 

211 121 112 

311 221 212 131 122 113 

231 312 321 222 213 132 123 

331 322 232 313 223 133 

332 323 233 

333 

MDS: Preference web of candidates 

Example: 3 components 
  3 behavioural modes for each of the components 

preference 

maximum preferred candidate 

minimum preferred candidate 
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111 

211 121 112 

311 221 212 131 122 113 

231 312 321 222 213 132 123 

331 322 232 313 223 133 

332 323 233 

333 
consistent or 
inconsistent 
candidates 

inconsistent  
candidates 
only 

consistent candidate 
(= diagnosis) 
maximum preferred 
consistent candidate 
(= maximum preferred 
diagnosis) 

New conflicts:  001, 110, 020 

Successors of 
some maximum 
preferred diagnosis 

No successor of 
any maximum 
preferred diagnosis 

MDS: Preference web of candidates 
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111 

211 121 112 

311 221 212 131 122 113 

231 312 321 222 213 132 123 

331 322 232 313 223 133 

332 323 233 

333 

Former maximum preferred diagnoses:       { 212, 132 } 
New maximum preferred diagnoses (stage 1):     { 222, 213, 132 } 
New maximum preferred diagnoses (stage 2):     { 213, 132 } 

MDS: Candidates update 

Old conflicts:  001, 110, 020 

New conflict:  012 
consistent candidate 
(= diagnosis) 
maximum preferred 
consistent candidate 
(= maximum preferred 
diagnosis) 
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1) Consistency check of all maximum preferred diagnoses 

2) Removal of all candidates proven to be inconsistent  

3) Generation of the preference successors of each candidate just removed 

4) Adopting the preference successors satisfying the following conditions: 

• The successor is not preferred by a different consistent diagnosis. 

• The successor is consistent itself. 

Actions at detection of a new conflict: 

MDS: Candidates update 
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3) Generation of the preference successors of each candidate just removed: 

Remark: This restricted method does not skip any eventual diagnosis 

• If C is a conflict contained in an old diagnosis, then generate only 
successors of C changing the behavioral mode of just one component 
contained in C. 

 (Generation of direct successors only, directly referring to conflict C) 

• If one of the direct successors contains a conflict C’, then do not generate 
this successor, but rather all successors referring  directly to C’. 

Each successor diagnosis not containing C is successor diagnosis 
of a direct successor not containing C 

Prop.: 

Actions at detection of a new conflict : 

MDS: Candidates update 
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• Conflicts are only relevant, if they may eventually remove a successor of a presently 
maximum preferred diagnosis. 

• For the consistency test, only consider relevant conflicts: Each diagnosis d stores the 
relevant conflicts. Any successor of d will only be checked for the conflicts of d’s list. 

conflict: 0 2 2 2 0 2 2 0  2 

candidate: 3 1 2 2 1 1 1 1  3 

relevant ? 

Eliminating irrelevant conflicts: 

Examples for relevant conflicts: 

MDS: Optimising the candidate generation 

Mathematical criterion for the relevance of a conflict 
(easy to check!) 

 A conflict c is relevant for a diagnosis d if for all components holds: 
c either assigns no mode (0) or a mode at least as high as the mode in  d. 
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conflicts:  
{001, 110, 020} 
 
relevant conflicts for: 
• 212: 020 
• 132: none 

111 

211 121 112 

311 221 212 131 122 113 

231 312 321 222 213 132 123 

331 322 232 313 223 133 

332 323 233 

333 
Consistent or 
inconsistent 
candidates 

Inconsistent  
candidates 
only 

Eliminating irrelevant conflicts: 

MDS: Optimising the candidate generation 

This means that 001 and 110 will never be checked again! 
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The Daimler product MDS contains a lot of further optimisations for 
accelerating the candidate generation process which are not 
mentioned here. 

MDS: Optimising the candidate generation 
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MDS: Conflict generation 

What is a conflict ? 
• Assignment of exaclty one behavioural mode resp. to some components of a system 

• Logically, a conflict is a disjunction of negative literals. 

• Comparing: Logically, a diagnosis is a conjunction of positive literals. 

How is a conflict generated? 
• by values contradicting each other 

• The contradicting values are backed by different assumptions. 

• Then one of the assumptions must be false. 

Candidate generation solves the following task: 
• Given a set of conflicts: Find the most probable maximum preferred diagnoses 

taking into account those conflicts. 

• This reduces the problem of finding the best diagnosis to the following task: Find the 
set of conflicts ! 
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TMS: Truth Maintenance System 

Objects of a TMS: 

Justification: 
A1 ∧ A2 ∧ ... ∧ An ⇒ C where A1, A2, ... , An , C are propositional nodes 
A1, A2, ... , An are the antecedents of the justification 
C is the conclusion of the justification 

Propositional node: 
Represents an arbitrary proposition (may be true or false) 

Contradiction node (⊥): 
represents a proposition which holds by no means 
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A 

s 

q r p 

E D C B 

t 

J6 

J4 

J5 

J3 J2 J1 

TMS: Truth Maintenance System 

Propositional nodes 

Justifications 

Justification 

Justification 

From the combination of propositions, 
a justification makes a new proposition. 
The antecedents of a justification are to be considered as conjunction. 

Propositional nodes 

Propositional node 

Propositional node 

antecedents 

conclusion 
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ATMS: Assumption-based Truth Maintenance System 

Additional functionality of an ATMS: 
 An ATMS works with several assumption sets in parallel: A (context) environment is 

the set of assumptions that should hold at the same time, but there may be different 
such environments holding alternatively. 

1) The propositions are assigned with the assumption environments under which they 
must hold. 

2) The ATMS propagates these assumtion environments over the justifications and 
determines which other propositions must hold then as well. 

3) In particular, the environments of the contradiction node reveals which enviroments 
are contradictory. 

Functionality of a general TMS: 
1) Certain propositional nodes are considered true (beliefs). 

2) TMS determines by propagation of these assumptions via the justifications which 
other propositions must also hold then. 

3) In particular, if the contradiction node must hold, then the assumptions must be 
contradictory. 
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Example for applying an ATMS 

Wire 

p1 

z2 
2 3 4 1 

5 6 7 

8 9 10 

Wire Wire 

Wire Wire Wire 

Battery Lamp Lamp Lamp 

+ 

- 

z3 z4 

p2 p3 p4 

m1 m2 m3 m4 

Behavioural modes: 
Mode 1 for all component types: normal behaviour 
Modus 2 for all component types: unique fault mode 

Modus 2 ⇒ (z = dark) 

Modus 2 ⇒ (minus = ground voltage) Battery: 
Lamp: 
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Example for applying an ATMS 

p: p4 = supply voltage 

A: Component 4 is ok 

p 

f 

s 
r 

B q 
A 

q: m4 = ground voltage 

r: z4 = lit 

B: Component 4 is faulty 

s: z4 = dark 

f: ⊥ (contradiction) 

(0 0 0 1 0 0 0 0 0 0) 

(0 0 0 2 0 0 0 0 0 0) 

(0 0 0 2 0 0 0 0 0 0) 

(1 0 0 0 1 1 1 0 0 0) (1 0 0 0 0 0 0 1 1 1) 

(1 0 0 1 1 1 1 1 1 1) 

(0 0 0 0 0 0 0 0 0 0) 

(0 0 0 2 0 0 0 0 0 0) 

environment 

u: z3 = dark 

u 

(0 0 0 0 0 0 0 0 0 0) 

x: p4 = ground voltage 
v: m3 = ground voltage 

w: p3 = ground voltage 
D: Component 7 is ok 

v 

(1 0 0 0 0 0 0 1 1 0) 

C: Component 3 is ok 

C 

w D 

x 

(0 0 1 0 0 0 0 0 0 0) 

(0 0 0 0 0 0 1 0 0 0) (1 0 1 0 0 0 0 1 1 0) 

(1 0 1 0 0 0 1 1 1 0) 

(1 0 1 0 1 1 1 1 1 0) y: p3 = supply voltage 

y 

(1 0 0 0 1 1 0 0 0 0) 

(1 0 1 0 1 1 0 1 1 0) 

conflicts 

not minimal 
Definition: 
A conflict is not 
minimal if it 
contains another 
conflict as subset. 
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Terminology of ATMS: 

Environment: 
Context of assumptions: Conjunction of assumptions, under which a proposition 
holds (if all assumptions of this environment are valid) 

conflict (nogood): 
Environment of the label of the contradictory node 

Propositional node: 
The propositional nodes distinguish between normal propositions and assumptions, 
i.e. the class of assumption nodes is a specialisation of propositional nodes. 

Label: 
Set of different environments for a propositional node. Different 
environments need not be consistent to each other. The proposition holds 
already under the disjunction of the environments. 

ATMS: Assumption-based Truth Maintenance System 
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Application of an ATMS for model-based diagnosis: 

Justification: 
Environment: 

Concurrent (conjunction) assignment of behavioural modes to components under which a 
proposition would hold. The assignment need not be complete, i.e. it is an arbitrary 
candidate (like in a conflict). 

For assumption nodes: Assignment of a behavioural mode to exactly one component 

conflict (nogood): 
Environment of the label of the contradictory node: Assignment of behavioural modes to 
components of which at least one must be faulty. 

Propositional nodes: 
1) „Normal“ nodes: Assignment of a certain value to a certain position (variable) in 

the system 

2) Assumption node: Assignment of a behavioural mode to a component 

Application of a generic behavioural rule to actual values 

This enables the same notation and meaning of conflicts as in the 
terminology of the GDE. 

ATMS: Assumption-based Truth Maintenance System 
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p 

r 

q 

Label update in an ATMS 

Interpretation of labels: 

Env P1 

Env P2 

Env Q1 

Env Q2 

Env (P1 ∧ Q1) 

Env (P1 ∧ Q2) 

Env (P2 ∧ Q1) 

Env (P2 ∧ Q2) 
• Several environments of a label for a node are 

treated as disjunction: The proposition holds when 
at least one of the environments is true. 

Elimination of redundant environments: 
• Contradictory environments may be removed. 
• This enables the removal of all environments containing conflicts. 
• Environments implying other environments of the same label may be omitted as well. 

Label of p 

Label of r 

Label of q 

Interpretation of justification: 
• r  holds when q and r are true 

(conjunction) 

• When environment e belongs to the label of node n, 
this means: e ⇒ proposition of n 
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User interface of an ATMS 
Input of problem solver: 

• Assumption nodes 
• “Normal” nodes 
• Justifications between the nodes 

(they must be obtained from the component library applied to actual values) 

Output to the problem solver: 
• Set of minimal conflicts (Definition of minimality on slide 21) 

The  ATMS performs automatically: 
• Generation of labels for the assumption nodes 
• Update of labels for all conclusions where the label of 

some antecedent has changes. 
• Elimination of redundant environments 

These are a lot of operations ! 

• Certain environment assignments to normal nodes, 
e.g., observations or other premises as (0 0 ... 0) 
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Candidate generator uses the ATMS as follows: 
• Generate all assumption nodes for the focus diagnoses 
• Value propagation (simulation): 

Compute all values resulting from assumptions of the focus diagnoses, 
generate the respective propositional nodes und justifications, 
plug this into the ATMS. 

• Ask the ATMS for the new conflicts. 

User interface of an ATMS 

Output to the problem solver: 
• Set of minimal conflicts 

Input of problem solver: 
• Assumption nodes 
• “Normal” nodes 
• Justifications between the nodes 

(they must be obtained from the component library applied to actual values) 
• Certain environment assignments to normal nodes, 

e.g., observations or other premises as (0 0 ... 0) 

This is done by a 
separate module 
called Value 
Propagator (VP) 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 27 

Separation of value propagation (VP) and ATMS: 
• The ATMS is responsible for propagation of environments in a given 

network with already determined value dependencies.  

Value propagation and ATMS 

• The propagation of values is performed by a rule propagator (VP) which 
generates justifications for actual values from the generic values of the 
behavioural modes of the components. Thus, VP generates the network 
of value dependencies required by the ATMS. 

What is propagation in general ? 
• Propagation is the distribution of information in a network made of 

nodes and edges 
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ATMS 

 
 

KRM rules 

VP Inference (Value propagation) 
• Execute rules (when antecedents are in focus) 
• Build ATMS Network

Propagation System

Activate rules whose 
antecedents are now 
in focus 

• Input of nodes and justifications 
• Marking already existing nodes 

which may be antecedents in 
rules not executed yet 

Focus update 

conflicts 

Value propagation and ATMS 

Knowledge Base 
(Component models plus 
system connectivity) 

KRM: 
Knowledge Representation Manager 

Candidate 
Generator 

Focus 
update 

In optimised candidate generators and ATMS’s the interface is more complicated. 
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What is the benefit of separating value propagation and ATMS? 

• Values are generated mostly from observations (measurements) and 
intended actions. This is not frequent, thus, there are not many values 
to be considered.  

Value propagation and ATMS 

• Environments are generated from assumptions about behavioural 
modes. Of such constructs there exist a lot of (even at single faults at 
least as many as there exist components). 

• This makes the update of focus environments much more often to occur 
than the computation of new values. The update of focus environments 
may be considered an ATMS internal problem 

 Better software architecture by modularisation 
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KRM 

ATMS 

VP 
Inference 

Candidate 
Generator 

Inputs & 
Observations 

Propagation System ACS System 

Interaction of candidate generator, RP and ATMS 

ACS: Assumption-based Constraint Solver 

Knowledge 
base 

Dialogue Component 
diagnoses 

Problem Solver 
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What does the knowledge base 
have to provide to the inference 
component (problem solver)? 

• Rules for the relations of values in 
each behavioural mode 
(component models) 

Requirement to the knowledge base 
 
 

KRM 

VP 
Inference 

Knowledge 
base 

• Knowledge about the value 
domains:
When are two values considered 
contradictory? 

ATMS 

Daimler‘s MDS solves these requirements by offering a 
constraint language for component models. 
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Applications of Artificial Intelligence 
 

Sebastian Iwanowski 
FH Wedel 

 
Chapter 4: 

Knowledge-Based Systems 
 

4.4: Machine learning (Case-Based Reasoning) 
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• Cases with complete symptom vector and associated faults (classified  unambiguously) 

Input to knowledge base: 

• Similarity measure for incomplete symptom vectors (often weighted between different 
types of symptoms)  

• Points in vector space 

• Similarity measure 

Structure of knowledge base: 

Job of inference engine: 
• For a new vector given, find the most similar symptom vector of the knowledge base. 
• Assign the same fault to the new vector as associated to the reference vector in the 

knowledge base (possibly with a probability value). 

a) Classical AI, with similarity measure: 

Case-Based Diagnosis 
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• Neural network with input layer (for symptom vector) and output layer (for faults) 
and (optionally) intermediate layer of nodes and edges, marked by variable weights.  

• Points in vector space 

• Neural network with clearly defined weights 
(dependent on trained symptom vectors and associated faults) 

Structure of knowledge base: 

Job of inference engine: 
• Apply new symptom vector to the input layer of the network. 
• Read the associated fault from the output layer. 

b) with neural networks: 

Case-Based Diagnosis 

• Cases with complete symptom vector and associated faults (classified  unambiguously) 

Input to knowledge base: 
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Generalisation of case-based diagnosis to arbitrary 
case-based reasoning strategies: 

Machine Learning (Case-Based Reasoning) 

• Given cases as vectors (complete symptom vectors): These are “learnt” and build the 
knowledge base. 

Principle (also called supervised learning): 

• Given new vectors, of which not all parameters are known (incomplete symptom vectors): 
These are to be classified.  

• Assign values to the unknown parameters. 

Job of inference engine (simple variant): 
• For the new vector, find the closest symptom vector learnt by the knowledge base. 

• For the unknown parameters of the new vector, assign the same values as in the associated 
symptom vector learnt by the knowledge base. 

This variant only makes sense when the unknown values come from a 
discrete (better finite) domain ! 
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Improvement for continuous value domains: 
Job of inference engine (better variant): 
• For the unknown parameters of the new vector, assign values “in between” values of 

“nearby” symptom vectors learnt by the knowledge base. 

Other mathematical formulation of this method: 
• Consider the unknown parameters of the new vectors as function values of the known 

parameters: Find a continuous function where all vectors learnt by the knowledge base are 
contained. 

• Of this function, assign the function values of the known parameters to the unknown 
parameters. 

• Take a class of functions, each function differing by certain parameters. 
• Determine the parameters solving an equation system obtained from the known reference 

vectors. 

How do we get an appropriate function for a given set of 
reference vectors? 

Query: 

Answer: 

Machine Learning (Case-Based Reasoning) 
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Distinguish between training errors and test errors: 
Fixing the polynomial degree for the classification function f will make it impossible 
that all training examples solve the function f correctly. 

 training error 

Taking a too small degree for the classification function causes underfitting: 

Optimisation goal: Make the training error as small as possible. 

Once, a classification function is chosen, 
this function will classify the test examples. 

Optimisation goal: Make the test error not much bigger than the training error, 
               i.e. minimise the expected difference between test error and training error. 

Taking a too high degree for the classification function causes overfitting: 

 test error 

graphics from deeplearning book, Goodfellow et al. 

Machine Learning (Case-Based Reasoning) 
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Determining parameters in function classes (regression): 

Linear regression: 
• Find the weights in a linear function of the form: 

Generalisation: 

2. Find the weights in equation systems of higher order. 
3. Find the weights in parametrised inequality systems. 

1. Find the weights in a linear equation system. 

• Case-based reasoning is designed for systems which cannot be 
modeled easily. 

• This is why a higher order equation system does not make sense. 

• It is better to work with many weakly connected equation systems and 
distribute the unknown knowledge. 





n

i

iin xwxxxf
1
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Machine Learning (Case-Based Reasoning) 
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Idea of neural networks: 

Input values 

Output values 

• The weights may be preset but are adapted to the examples learnt. 

weights weights 

weights 

weights 

weights 

weights 

x1 
x2 

x3 

fGiven a multi-valued function     (notation:                       ) ),,,( 21 ni xxxf 

),,( 3211 xxxf

),,( 3212 xxxf

• Function values of new inputs are obtained applying the neural network. 

Neural Networks 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 9 

Functionality of a single neuron: 

e1 

en 

a1 

am weights Wi,j 





n

j

jjini eweeea
1

,21 ),,,( 

Neural Networks 

• A = (a1, …, am)  is a linear function in the e’s. A is represented by an (m x n)-matrix of the wij’s. 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 
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Functionality of a single neuron: 

e1 

en 

a1 

am weights Wi,j 

Neural Networks 

∙ 

∙ 

∙ 

∙ 

∙ 

∙ 

g














 



n
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• g is a generalised threshold function which is the same for all outputs of the same neuron. 

• A = (a1, …, am)  is a linear function in the e’s. A is represented by an (m x n)-matrix of the wij’s. 
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Different layered neural networks: 

Neural networks without intermediate layers: 
• Neurons of the first layer accepting the inputs are connected to neurons of the second layer providing 

the outputs. 

Neural networks with intermediate layers (deep learning approach) 
• Input and output layers are connected by further “hidden” intermediate layers. 

• The term “deep learning” is usually only applied when there are at least two hidden layers. 

Neural networks with feedback (Recurrent Neural Networks, RNN): 
• Generation of “memory” 

In standard neural networks, all neurons are placed on certain layers: 
• There is an input neuron for each input variable and an output neuron for each output variable. 

Thus, the input neurons represent linear (1,n) functions and the output neurons linear (n,1) functions. 

• Neurons on the same layer have the same distance to input and output. 

• Links are only existing between neurons of adjacent layers. 

• By default, all neurons of a layer are connected to all neurons of the adjacent layers (one in input, one 
in output direction). But this may change even dynamically during the learning process. 

Neural Networks 
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Basic technique for adjusting the weights (modern approach): 

Neural Networks 

Initialisation of the weights of all neurons: 

• Principally, arbitrary weights may be chosen. 

• There may be specific initialisation heuristics for special types of networks. 

• Forward propagation from input to output 

• Comparison between predicted values and real values at the output 

• For the error estimate (called „loss function“), different methods may be possible: 
     e.g. means-squared, cross-entropy 

• Backward propagation from output to input: Adjusting the weights considering this sample 

For each (input, output) training sample: 

„Backpropagation algorithm“ (Rumelhart, 1986) 

Details and examples (including implementation) in: 
Erik Genthe, „ Backpropagation in neural networks – explained at examples“ (in German),  FH Wedel seminar presentation, 
SS 2020, https://intern.fh-
wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2020SS/Seminar/Ausarbeitung3BackpropagationGenthe.pdf 
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Neural Networks 

 Forward propagation from input to output: 
• The input values are attached to the input layer. 

• The output of each neuron is computed with the so far used weights successively (in the order how far 
the neuron is apart from the input). 

• This is repeated until the output layer has got all values. 

Forward and backward propagation in detail: 

Backward propagation from output to input: 
• The output layer values are compared with the real output values of the sample, and the output error is 

computed using the predefined loss function. 

• For each neuron directly connected to the output layer, it is computed how much this contributed to the 
output error. The more it contributed, the more the corresponding weight is changed. 

• This is repeated towards the input layer, i.e. for each input xi of the latest layer considered (which is the 
output of the previous layer considered), it is computed how much each neuron of the previous layer 
contributed to xi. 

• Note: The error should not be corrected to zero (danger of overfitting). This is compensated by a 
learning rate factor <<1 which has to be multiplied with the optimum corrector. 

• Important: There may be several ways to compute the amount of contribution of a neuron. 

Basic technique for adjusting the weights (modern approach): 
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Neural Networks 

 Gradient descent method (the most popular example for backward propagation): 
• The impact of a weight to an error is computed by the partial derivative w.r.t. this weight of the error 

function. The derivative of the function of a neuron corresponds linearily to the input by which the 
weight is multiplied, but the error function may be nonlinear. 

• The easiest formulae describe the impact of the weight of the output layer. Then the partial derivative is 
rather simple. 

• The impact of the weight of earlier layers is obtained by plugging in the dependency of later values 
from previous weights. Then the derivative becomes more complicated and is highly nonlinear due to 
the chain rule involving the weights of later neurons. 

• If an activation function is involved in a neuron, this must also be considered in the descent function. 
Then the derivative of the activation function must be considered as well. 
Note: Typically, the activation function is not linear but of higher order or even exponential. 

• Notation: The derivative of a multidimensional function w.r.t. all involved variables, 
    is called the Nabla ∇ operator consisting of all single partial derivatives. 

• If the function is multi-valued, the Nabla operator is a matrix consisting of the partial derivatives. 

How to perform backward propagation: 
Basic technique for adjusting the weights (modern approach): 

Detailed  desription with example also in: 
Michel Belde, Bachelor  thesis on  „ Improvement of a consulting app for the sales department using image 
recognition“,  chapter 3.1, on class website (in German) 
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Neural Networks 

 Vanishing / exploding gradient problem: 
• If gradients are close to zero, they accumulate in deep networks and vanish until input. 

• This is mainly due to unfortunate activation functions. 

• Deep networks need activation functions with a derivative not close to zero in all of the domain. 

• If gradients are considerably higher than one, they accumulate in deep  networks and may explode. 

• Deep networks need activation functions with a derivative not much higher than one in all of the 
domain. 

Problems with backpropagation in deep networks: 

Basic technique for adjusting the weights (modern approach): 

Dennis Maas, „Specific methods for training and evaluation of deep neuronal nets”, FH Wedel seminar presentation, SS 
2019 (in German), 
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung3_TiefeNetze_Maas.pdf 

More details in: 
Jacob Hansen, „ Details of the backpropagation algorithm“,  FH Wedel seminar presentation, SS 2019, http://intern.fh-
wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung1_Backpropagation_Hansen.pdf 

Improvements for Backpropagation: Batches 
• Consider a set of several input/output samples and feed them together in the network. 

• The weights are then adjusted such that the average error is minimised. 

http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung3_TiefeNetze_Maas.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung3_TiefeNetze_Maas.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung3_TiefeNetze_Maas.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung1_Backpropagation_Hansen.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung1_Backpropagation_Hansen.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung1_Backpropagation_Hansen.pdf
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https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464 
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• corresponds to a single regression function. 
The weights are in the individual input neurons. 

• Unique output neuron has a step function only, no further weight. 

• cannot compute XOR function (Minsky 1971). 

• can be generalised for an n-m function having several outputs. 

Types of Neural Networks 

The first one: Perceptron (1957, Frank Rosenblatt) 

Weight adjusting technique: 
• does not apply backpropagation algorithm as described before. 

• Applies Hebb‘s rule instead: Cells that fire together, wire together. 

https://towardsdatascience.com
/the-mostly-complete-chart-of-
neural-networks-explained-
3fb6f2367464 

Aurelien Geron: Hands-On 
Machine Learning with SciKit Learn 
& Tensorflow, O‘Reilly  2017 
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Deep Feed Forward Network 

Types of Neural Networks 

• uses backpropagation algorithm as described before 
(proposed by Rumelhart 1986). 

• can compute all logical functions. 

• differs from Perceptron not only by internal layers, 
but also by other activation functions than the step function. 

• is nowadays used in a lot of standard learning settings. 

https://towardsdatascience.com
/the-mostly-complete-chart-of-
neural-networks-explained-
3fb6f2367464 
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Recurrent Neural Network 

• network with “memory” 

• Recurrent neurons receive their own output as an 
input with a delay. 

• suitable for context dependent input: In which order 
did data occur? 

• With the use of simple neurons one can store the 
order only, by more complicated “memory cells” one 
can store past information for a given time. 

• Rumelhart’s backpropagation algorithm can be 
adapted when the network is unfolded for several time 
stamps (only discrete time possible): 
backpropagation-through-time algorithm  

 

Types of Neural Networks 

https://towardsdatascience.com
/the-mostly-complete-chart-of-
neural-networks-explained-
3fb6f2367464 

More details in: 
Marcello Attila Messina, „Weight adjustment in neural networks with memory”, FH Wedel seminar presentation, SS 2019 (in 
German),  
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf 

http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
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Deep Convolutional Network 

• After the (pink) “convolutional layers”, the 
(circled) “pooling layers” extract the 
important features and neglect unimportant 
ones. 

• Unlike in other internal layers, neurons of 
pooling layers are not connected to all 
neurons of the adjacent layers. 

• This is the modern standard for image 
recognition and classification. 

Types of Neural Networks 

https://towardsdatascience.com/the-mostly-complete-chart-of-
neural-networks-explained-3fb6f2367464 
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Different Activation Functions 

• The activation function of a neuron gets the input to that neuron and transforms this into a 
new value which is really fed into that neuron (applying the weight function). 

• It is customary to choose the same activation function for all neurons of a given network. 

Neural Networks Techniques 

From: Thimo Tollmien, Master thesis on  „Optimisation of delay predictions with deep learning“,  FH Wedel 2018 



FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 22 

Special Improvement Techniques 

Improvement by bias nodes 
• Bias nodes are additional input nodes for each layer of the network. They are not 

connected with the previous layer. So they feed in extra information. 

• Usually they feed in an extra “1” per layer. 

• This may help weight adjustment in the training period.  

https://www.quora.com/What-is-bias-in-artificial-neural-network 

Neural Networks Techniques 
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Dropout 
• avoids overfitting 

• Input vectors are fed into the network several times 

• Each time a different set of randomly chosen connection is cut. 

• If the avoidance of a connection does not increase the training error, then this connection 
will be ommitted in the future.  

 

Special Improvement Techniques 

From: Thimo Tollmien, Master thesis on  „Optimisation of delay predictions in public transportation with deep learning“,  FH Wedel 2018 

Neural Networks Techniques 
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Training Techniques 

Feature selection 
• Add or remove certain features (dimensions) of the training set. 

Cross validation 

The quality of a trained neural network decisively depends on the 
quality of input samples and features it was trained with. 

• Split the training set into two (or more) parts: Train only with one part and test the result 
with the other. Do the same vice versa. 

Neural Networks Techniques 
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Data mining (unsupervised learning) 

Machine learning without known results 

Given some data input. Is it possible to classify this input into different categories? 

Different classification methods: 

• Cluster detection 

• Greatest gap detection 

Common clustering techniques: 

• nearest neighbor 

• k-means (for k clusters) 

Data mining is an own field with a rich variety of classification techniques. „Big data“ 

Learning in this context means: Continuous adaptation to changing data 

From: Dirk Lützelberger, NXP, Colloquium talk 
on Machine Learning FH Wedel 2018 
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Data mining (unsupervised learning) 

Machine learning without known results 

Given some data input. Is it possible to classify this input into different categories? 

k-means details (basic method): 

1) Decide for a certain number k and keep it fixed. 

2) Select k arbitrary clusters and compute their means. 

3) Determine the variance (sum of the square distances to the mean) for the clusters. 

4) Reshuffle the k clusters, and repeat Step 3). Store the clusters with the respective minimum. 

There are a lot of refinements for this method. 

Note: As long as Step 1) is observed, k-means does not help to detect the „optimum“ k. 
 

         Without Step 1) this method can be generalised to find an „optimum“ k. 

Remark: The problem „Find the best arrangement of k clusters such that the distance to the respective 
means is minimised“ is NP-hard (i.e. not likely to be computable efficiently) 

5) Repeat Steps 3) and 4) until the minimum does not “considerably” improve.  

x-means 
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Autoencoder 

• suitable for unsupervised learning 

• Input and output layers should have the 
same number of neurons. 

• Hidden layers should have fewer neurons 
than input und output layers. 

Types of Neural Networks 

https://towardsdatascience.com
/the-mostly-complete-chart-of-
neural-networks-explained-
3fb6f2367464 
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Graduation theses in Machine Learning supervised by iw 
Machine Learning in Practice 

Tjark Smalla (WS 2016): Implementation of a Neural Network for Order Prediction and 
Comparison with an Existing Logistic Regression 
Otto GmbH 

Lasse Karls (WS 2017): Graph-based feature extraction to improve machine learning in 
predicting the business affiliation of a Signal Iduna customer, 
Signal Iduna 

Bronislav Koch (WS 2017): Determination of a set of clients with maximum probability 
for project success in a multivariate model, 
Sven Mahn IT GmbH 

Michel Belde (WS 2018): Improvement of a consulting app for the sales department 
using image recognition, 
akquinet Engineering GmbH 

Dennis Maas (SS 2019): Transformation invariant bar code recognition using neural networks, 
Opus//G GmbH 

Thimo Tollmien (SS 2018): Optimizations of Delay Predictions in Local Public 
Transport Using Deep Learning, 
Master thesis in cooperation with HBT 
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Graduation theses in Machine Learning supervised by iw 
Machine Learning in Practice 

Henning Brandt (WS 2019):  Implementation of a model for calculating the concentration 
of volatile organic compounds in a multi-capillary gas chromatograph using machine 
learning, 
bentekk GmbH / Dräger AG 
 
Linus Stenzel (WS 2019):  Development of an artificial intelligence with human play style 
in the game Canasta, 
LITE Games GmbH 

Frederik Schnoege (SS 2020):  Use of natural language processing in IT support, 
Master thesis in cooperation with Beiersdorf Shared Services GmbH 

Ines Kemsies (WS 2021):  Prediction of system failures by using a recurrent neural network, 
Akquinet engineering GmbH 

Vincent Grohne (WS 2020):  Comparison of different machine learning models for the 
detection of potentially failed securities deliveries, 
Berenberg Gossler KG (Bank) 

Shwetha Mohan Kumar (WS 2021):  Computation of delays in the public transportation 
of Hamburg using Deep Neural Networks, 
Master thesis in cooperation with HBT 
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Software Kits 

SciKit Learn (http://scikit-learn.org) 

Applying Neural Networks in Practice 

Tensorflow (http://tensorflow.org) 

• open-source library implemented in Python 

• open-source library implemented in Python und C++ 

• developed at Google, used in internal software 

From: Thimo Tollmien, Master thesis on  „Optimisation of delay predictions in public transportation with deep learning“,  FH Wedel 2018 
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References 

Neural Networks 

Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning. MIT Press, 2016. 
http://www.deeplearningbook.org 

Aurélien Géron. Hands-On Machine Learning with Scikit-Learn & TensorFlow. O’Reilly, 2017. 
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Support Vector Machines 

Other modern ML techniques 

• applies high dimensional vector algebra 

• tries to find separating hyperplanes between different sets of classification 

• may be regarded as follow-up of the classical approach 

Literature:  (available in our library in 8.5.3) 

Nello Christianini / John Shawe-Taylor:: An Introduction to Support Vector Machines. 
Cambridge Univ. Press, 2000 (2006). 

Vojislav Kecman: Learning and Soft Computing. MIT Pr. 2001 
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What is the crucial difference between neural networks and 
„classical“ CBR systems? 

 Neural networks distribute the knowledge about the cases learnt. 

• Arbitrariness of function class chosen does not play such an important role. 

• Good neural networks need fewer training cases than classical CBR systems. 

Theoretical advantages of distribution: 

• Intransparent cases are handled by an intransparent method: 
The distributed method is “self-adjusting”. 

Practice shows: 

• Neural networks provide better classification results. 

• Deep networks made a great boost to AI in general: They are applied in products already. 

Machine Learning (Case-Based Reasoning) 
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Summary: Machine Learning (Case-Based Reasoning) 

Advantages and Disadvantages:  

• The method is simple. 

- The diagnosis of the run time component is very fast. 

- Knowledge acquisition can easily be automatised. 

- The knowledge base consumes a lot of storage (classical approach only). 

- The knowledge base can only be generated for systems where 
experience is given. 

Let‘s get back to our sample application diagnoses for comparing 
different KBR methods: 

+ 

+ 

− 

− 
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Advantages and Disadvantages:  

- Each run time diagnosis may be wrong. 

• The knowledge base does not contain any other structural 
knowledge than the similarity measure or the NN. 

- Similarity measure and neural network are arbitrary. 

- Even with a small change of the system, the knowledge base cannot be used reliably. 

- All application domains are equally suited. 

- The same inference engine may be applied for totally different application domains.  

- The result is not justifiable (at least for neural networks): Distrust “algorithms”. 

- For systems without a reasonable model, classification results are rather good 
(at least for neural networks).  

+ 
+ 
+ 

− 

− 

− 

− 

In this context, „algorithms“ denote 
statistical algorithms for backpropagation 
plus the network design. 

This is not to be confused with algorithms 
outside AI or algorithms for symbolic 
(rule-based) AI. 

Summary: Machine Learning (Case-Based Reasoning) 
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Applications of Artificial Intelligence 
 

Sebastian Iwanowski 
FH Wedel 

 
Chapter 4: 

Knowledge-Based Systems 
 

4.5: Concluding Comparison of the Different Reasoning 
Techniques 
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Run time system: 

Application from practice: Technical diagnosis 

Input: 

Output: 

(knowledge-based systems call this problem solver / inference engine) 

This is where diagnostic systems do not differ ! 

• Setting certain control inputs  
• Observing values depending on this setting 

• A unique instruction how to repair which component 
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Knowledge-based diagnosis: 

1) Knowledge acquisition: Input into knowledge base 

2) Knowledge structure 
• depends on knowledge acquisition 

• model-based 

This is where diagnostic systems may differ ! 

• symptom-based (rule-based)  

• case-based (machine learning) 

3) Knowledge processing be the problem solver 
• depends on knowledge structure 

as alternatives 

Application from practice: Technical diagnosis 
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• Causing and manifest faults for the overall system 

Input to knowledge base: 

• Possible symptoms (measurements)  
• Relations between faults and symptoms (rules) 

• Semantic network (e.g.,fault networks, decision trees) 

Structure of knowledge base: 

This is „classical“ expert system technology 

1. Symptom-Based Diagnosis 

Job of inference engine: 
• Navigation in semantic network  



FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 5 

• system model: hierarchical structure of the system (+ how the components are connected) 

Input to knowledge base: 

• component models  

• constraint network (assembled automatically) 

Structure of knowledge base: 

2. Model-Based Diagnosis 
Goal: 
• fast knowledge acquisition 

• exact and provable solution of problem solver 

Job of inference engine: 
• GDE approach: conflict-based candidate generation 

• sophisticated acceleration techniques in order to get resonable run time behaviour 
(only discussed for candidate generation, others not discussed in class) 
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• Cases with complete symptom vector and associated faults (classified  unambiguously) 

Input to knowledge base (supervised approach only): 

• Similarity measure for incomplete symptom vectors (often weighted between different 
types of symptoms)  

Job of inference engine: 

• For a new vector given, find the most similar symptom vector of the knowledge base. 
• Assign the same fault to the new vector as associated to the reference vector in the 

knowledge base (possibly with a probability value). 

a) Classical AI, with similarity measure: 

3. Case-Based Diagnosis (Machine Learning) 

Structure of knowledge base: 

• Neural network with input layer (for symptom vector) and output layer (for faults) 
and (optionally) intermediate layer of nodes and edges, marked by variable weights.  

b) with neural networks: 

a) 

b) • Apply new symptom vector to the input layer of the network. 
• Read the associated fault from the output layer. 
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  heuristic: 
if <features> then <solution> 

(usually the solution has got disjunctive alternatives, 
 in modern systems this may be combined with probabilities) 

 
  causal: 

•   overlapping classification: 
 if <solution> then <features> 

 

• structural classification: 
local behavioural model => system function 

(search for the best behavioural models being consistent with the 
observed overall system behaviour) 

Systematic classification of inference techniques 
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  case-based (machine learning approach): 
  
 Given cases with features and solution 
 Apply regression technique (interpolation) 
 

•   with similarity measure: 
arbitrary regression 
 

•   in neural networks 
distributed linear regression 
 
•   in data mining (unsupervised approach): 

features from knowledge base => new correlations 

Supplementary, apply one of the other methods (heuristic or causal) 

Systematic classification of inference techniques 
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rule-based 
reasoning 

model-based 
reasoning 

case-based 
reasoning 

Classification of knowledge-based inference by depth 

knowledge about domain flat deep 

• heuristic 

• causal 

• case-based (similarity measure, neural network, data mining) 

for flat and deep knowledge 

for relatively flat knowledge 

for very flat knowledge 

In principle, this may be arbitrarily combined with other dimensions of knowledge quality: 

Systematic classification of inference techniques 

• certain vs. uncertain (consider the probability of a statement) 

• exact vs. fuzzy (consider the accuracy of a statement) 
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Concluding comparison for applicability in practice 
symptom-based case-based model-based 

fast run time component ++ ++ o 

fast knowledge acquisition o ++ + 

fits to systems 
of complex structure -- ++ ++ 

fits to systems containing 
complex components + ++ -- 

reusability of knowledge o -- ++ 

fits to diagnosis of unknown 
faults - a) -- b) - + 

is readily available at 
product launch o a) -- b) - ++ 

provable reliability of 
diagnoses + a) o b) -- ++ 

Interview about comparison causal knowledge vs. probabilistic knowledge: 

https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/ 




