
FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 1:

Introduction and Survey

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 2

Prerequesites of knowledge:
Discrete Mathematics (including applications), Programming I and II

helpful: Object oriented programming

Targets of this course:

 Raising interest for AI applications and technology

Survey knowledge of most AI technologies

Knowledge of several application fields for AI

Survey of this course

Which are the applications and technologies?

Wait a second …

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 3

Turing‘s test

What is AI ?

A software is intelligent, if a human cannot
distinguish its behaviour from the behaviour of a
human.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 4

Application: Medical Diagnosis

Psychoanalysis: Eliza

Medical Diagnosis: Mycin

1966: Joseph Weizenbaum, MIT

Computer performs a psychoanalysis session and acts
„as one thinks a psychoanalysist would act“.

1972: University of Stanford

• for diagnosis and treatment of infectional deseases

• got high hit scores

• little acceptance among physicians due to distrust to computers

• worked with probabilistic rules

• passed Turing‘s test with a lot of people

• response rules

• built-in language assembler and composer

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 5

XPS

knowledge base
(network of rules)

problem solving component request /
Input

answer /
solution

expert rules

Expert System Architecture

Base Technology: Expert System

dialog
component

knowledge
acquisition
component

dialog
component

justifications
for solution

explanation
component

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 6

Input:
• Technical system (e.g. car, train)
• Observations (e.g. measurements, fault codes,

driver‘s complaint), out of order.

Task:
Detect,
• for which reasons the system is out of order
• exactly enough to recover the proper function of

the system.

What is technical diagnosis?

Application: Technical Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 7

measure-
ments

knowledge about structure and function:
specific symptom  specific diagnosis

1970-1980s: diagnosis = heuristic classification
Application: Technical Diagnosis

XPS

knowledge base
(network of rules)

problem solving component diagnosis

dialog
component

knowledge
acquisition
component

dialog
component

explanation
component

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 8

automatic acquisition
(without experts!)

component models
• normal function
• fault behaviours

1990s: diagnosis = model-based reasoning

system
structure

local behaviour of
single parts

+

measure-
ments

MBR

knowledge base

problem solving component diagnosis

dialog
component

dialog
component

Application: Technical Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 9

knowledge + problem solving component = KBS

data processing rules

KBS

knowledge base

problem solving component request /
input

answer /
solution

knowledge

Architecture KBS
(joint generalisation of XPS and MBR)

Base Technology: Knowledge-Based Systems

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 10

Goals:

• Identifying persons of a certain group (gender, appearance, attitude, etc.)

• Identifying certain persons if they are in a certain area

• Forensic analysis

Application: Image recognition

• Identity control for admission / authorisation

• Identifying street signs

• Identifying arbitrary objects for certain purposes

• …

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 11

Base Technology: Machine Learning (CBR)

Knowledge Acquisition Technique: Training by examples

• modern method: deep learning

• modern method: Support Vector Machines

1. approach: vector-based using a similarity measure
• classical approach already used in the early days of AI

2. approach: Neural networks

Machine learning techniques are a current hype due to impressing success stories

This is why nowadays many people identify AI with Machine Learning

“Algorithms” in this context are understood the algorithms
how to adjust the parameters of the neural network from the training samples

• Neural network algorithms are purely statistical and have no causal justificatíon
• Algorithms investigated in “Algorithmics” do always have a causal justification which can be proven.

Note!

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 12

Recent graduation theses supervised by iw:
Applications using Machine Learning:

Master thesis Thimo Tollmien: Optimizations of Delay Predictions in Local Public Transport Using Deep Learning,
 SS 2018

Bachelor thesis Dennis Maas: Transformation invariant bar code recognition using neural networks, SS 2019

Bachelor thesis Michel Belde: Improvement of a consulting app for the sales department using image recognition,
WS 2018/19

Bachelor thesis Lasse Karls: Graph-based feature extraction to improve machine learning in predicting the
business affiliation of a Signal Iduna customer, WS 2018/19

logistics

sales

customer maintenance

traffic advice, big data

Bachelor thesis Henning Brandt: Implementation of a model for determining the concentration of organic
molecules in a multicappilar gas chromatograph using machine learning, WS 2019/20

technical diagnosis

Master thesis Frederik Schnoege: Einsatz von Natural Language Processing im IT Support, SS 2020

semantic categorisation

Master Thesis Shwetha Mohan Kumar: Computation of Delays in the Public Transportation of Hamburg, WS2021/22

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 13

Application: Passenger Information System

Task:
For two points A and B, find the
shortest path between A and B
using exclusively segments of the
traffic network.

Solution:
Dijkstra‘s algorithm
(cf. Discrete Mathematics, ch. 7, graph theory)

A* algorithm

Optimisation with further heuristics (e.g. Geofox system für Hamburg Transportation Network)

Optimisation with preprocessing (e.g. Hafas for German Railways)

several seminars, projects and graduation
theses at FH Wedel on routing

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 14

Application: Passenger Information System
Passenger information for HVV with smartphones:

Diploma thesis Sebastian Hammes (eos-uptrade, SS 2010)

Bachelor thesis Henning Reimer (HBT, SS 2010)

Development and implementation of actual prototypes:

• iPhone

• Android smartphones

• results used in HVV App

• results used in Geofox App

Master thesis Josias Polchau (HBT, SS 2014)

• Innovation award of Rotary Club Wedel

Speed-up of routing computation:

Master thesis Nicolas Mönch: Shortest paths in dynamic graphs, WS 2015/16

Master thesis Lukas Müller: Hierarchical Algorithms in Public Transport, SS 2018

Bachelor thesis Christian Binder: Optimisation of a public transport routing algorithm, SS 2017

This is NOT typical AI !

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 15

Mobile passenger assistant:
A „navigation device“ for public short-distance traffic

implemented

Master thesis by Josias Polchau (SS 2014)

implemented
implemented

implemented

does not contain AI techniques
as defined in a classical way

Application: Passenger Information System

Example for a typical AI solution in this context:

Master thesis Thimo Tollmien: Optimizations of Delay Predictions in Local Public Transport Using Deep Learning,
SS 2018

Master Thesis Shwetha Mohan Kumar: Computation of Delays in the Public Transportation of Hamburg, WS2021/22

implemented

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 16

Differences to be considered for adaptation to road networks:

Application: Road Navigation

• Road network is much denser.

• no time-tables or opening hours

• Traveling time depends very much on traffic density.

• Traffic devices are not controlled centrally.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 17

Ants seeking for food
Pheromones

Swarm Intelligence: Pheromone-Based Approach

Application: Road Navigation

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 18

Start Goal

Obstacle

Pheromones
Analogue:

Cars seeking for routes

Swarm Intelligence: Pheromone-Based Approach

Application: Road Navigation

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 19

Base Technology: Swarm Intelligence

• a lot of small autonomous units, each with limited ability

• total organism has a higher ability than the sum of the units
 (“emergent behaviour”)

• determined rule system for total organism

• anytime ability

Research focus at FH Wedel by iw:
Several projects, graduation theses and publications since 2006

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 20

Kasparov 2.5 – Deep Blue 3.5

First Milestone 1997:

Further infos: http://www.research.ibm.com/deepblue

Application: Game AI

Chess computer (Ex. for a turn-based game)

http://www.research.ibm.com/deepblue

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 21

Application: Game AI

• Google‘s Deep Mind developed Alpha Go.

• Alpha Go used Machine Learning and was trained by experienced Go players.

• In 2015 Alpha Go beat several world famous Go players.

Second Milestone 2015:

Go computer (a much harder turn-based game)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 22

Application: Game AI
Go computer (a much harder turn-based game)

Third Milestone 2017:
• In 2017, Deep Mind developed the update version Alpha Go Zero.

• Alpha Go Zero started by playing against itself and was not trained by humans at all.

• Within 3 days of continuous training, Alpha Go Zero reached a stage, experienced Go players
need years for.

• Alpha Go Zero played 100 matches against Alpha Go and won them all.

• By now, DeepMind developed improved versions, e.g. AlphaZero which can also play other
games like chess.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 23

Application: Game AI

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 24

Application: Game AI

Turn-based game „Catch the fox“

• Diploma thesis 2009 at HBT (operator of Geofox)

• 3. prize of Hochbahn award

• Computer controls the fox
which should be caught by human-controlled avatars

• Game uses real time information of HVV

• Originally programmed on GoogleMaps, then transferred to licensed map

• License reasons forced to switch off the online game.

• A new implementation is only possible with OpenStreetMap.

Project work possible at HBT

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 25

Source Age of Empires 2, screenshot of Nils van Kan

Application: Game AI

Real-time strategy games

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 26

• Path finding and location analysis

• Resource planning

• Policies and strategies

Typical AI requirements:

Real-time strategy games

Application: Game AI

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 27

• Construction of search spaces

• Uninformed search strategies

• Informed search strategies

Base Technology: Search Strategies

- breadth-first search

- depth-first search

- combined search Special case: Dijkstra‘s algorithm

Special case: A* algorithm

is used in navigation products as well

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 28

• Pathfinding and terrain analysis in environments changing dynamically

Requirements in modern games:

Application: Game AI

Realtime strategy games

Algorithmic techniques:

• Construction of way graph for navigation

• Learning from suboptimal paths

• Working with unsafe information

does not always
include classical AI

but is always
considered Game AI!

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 29

Application: Traveling Salesman Problem (TSP)
Master example for an NP-hard problem:
For a given set of cities with known mutual distances, find the shortest round
trip passing each city at least once.

Source: http://www.tsp.gatech.edu//index.html

http://www.tsp.gatech.edu/concorde/index.html

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 30

Generalisations in logistic applications:

• considering time restrictions (time windows)

• considering load capacities for delivery problems

• further system-specific requirements

Examples for graduation theses in companies:
 implico: Tour planning for oil and gas delivery (SS 2010, SS 2011, SS 2013)

Long-term development project: Tourist Information System

http://vsrv-studprojekt2.fh-wedel.de:8080/touristinformationsystem/home

Christoph Forster / Thomas Kresalek / Felix Döppers:
 Master project Hamburg Tourist Information (since 2009)

Solution of dynamic problems via ant systems
Example for a graduation thesis in a company:
 Christopher Blöcker: Dynamic optimisation of tour delivery using an ant system (SS 2011)

Application: Traveling Salesman Problem (TSP)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 31

Application: Class Scheduling
Given finite sets Courses, Rooms, Time slots
Task: Generate an injective (one-to-one) function C → RxT

Strict Constraints (must be fulfilled in any case):
• Certain courses must not take place at the same time

• For some courses, certain time slots are not admitted

• For some courses, certain rooms are not admitted

Soft constraints (may be violated):
• Certain courses should not take place at some times

• Certain courses should take place successively

• Certain courses should not take place on the same day

Optimisation function:
• fewest violations of soft criteria

• fewest free periods for certain study programmes

• most uniform distribution on different days for ...
 Bachelor Thesis Timm Hoffmann:
Autonomous Planning System for Generating a Timetable for FH Wedel, WS 2013/2014

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 32

Base Technology: Constraint Satisfaction Problem
(CSP)

Specification of a CSP:
• set of variables
• domains of definition
• constraints: relations between variables (strict or soft)

(nomally, equations and inequalities)

• optimisation criterion
(normally, a real-valued function on the variables which has to be minimised or
maximised)

valid solution:
 assignment of all variables with values such that all strict constraints are satisfied

optimal solution:
 valid solution optimising the optimisation criterion

Manifold application scenarios in various problems of logistics

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 33

Requirements:

• Tourist gets the final control.

• Service provider is autonomous and takes responsibility for all information

• Independent broking between several providers

• Flexible response to requirement changes even during the tour

• Fault tolerance for single provider failure

Application: Tourist Information System

• Arbitrary service providers should be subject to be added or withdrawn
 automatically during system operation.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 34

service providers
service providers are
autonomous and have own
terminologies and concepts

ontology
Server

ontology server provide the
interface between different
terminologies and concepts

recomm-
endation

server
recommendation server
responds to composed queries

Tour Scheduling Server
composes the tours

tour
scheduling

server

public transport router

Tourist GUI Server
administrates individual
preferences and tours

tourist
GUI

server

content
Server

content server
provide the interface
between service
providers and tour
planner

Architecture of tour planning system: prototype of a SOA

digital map

trip
server

GUI
trip server
computes
paths
between
two places

Application: Tourist Information System

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 35

Base Technology: Agent-Oriented Software

Multi-agent system: Software agent:

autonomous

social competence

reactive

proactive

object

 Weitere Infos: Seminarvortrag und Ausarbeitung von Matthias Rohr, SS 2004, Nr. 4,
 http://www.fh-wedel.de/~si/seminare/ss04/Termine/Themen.html, erreichbar über archiv/iw

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 36

 Quelle: Seminarvortrag und Ausarbeitung von Matthias Rohr, SS 2004, Nr. 4

Agent property: Proactivity (goal oriented)

Agents do not only react to stimuli of the environment,
but also depend on an internal state and have the
capibility to pursue own plans and actions.

=> They are taking initiatives

 environment

state

agent
actions

rules

„The difference between an automation and an agent is a somewhat like the difference
between a dog and a butler. If you send your dog to buy a copy of the New York Times
every morning, it will come back with its mouth empty if the news stand happens to have
run out one day. In contrast, the butler will probably take the initiative to buy you a copy
of the Washington Post, since he knows, that sometimes you read it instead.''

Le Du

Base Technology: Agent-Oriented Software

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 37

• ontology management

• description language

• description logics

Base Technology: Semantic Network

developed in the 1990s based
on AI syntax standards of the
1980s

Modern adaptation (2001): Semantic Web standards

Ontology management, description language and description logics
in XML or comparable standards

Common feature:
Universally valid definitions in a syntax readable by engines and browsers

Initiator: Tim Berners-Lee

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 38

Definitions from Russell / Norvig

Defining AI

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 39

Defining AI

AI deals with problems which

• are relevant in practical applications.

• are NP-hard if they can be specified in a mathematical way.

• may no be specifiable in a mathematical way.

Definition iw

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 40

The classical controversy between different research
communities in computer science:

AI vs. Algorithmics

• flexible solutions

• human customer oriented solutions

• exact solutions

• efficient solutions

This need not be contradictory!

Features of classical AI solutions

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 41

Intelligent creatures are able to process very general knowledge: The more
general, the more intelligent.

The ability to process general knowledge needs general description
languages for data and processes.

The most general description language is the language of
mathematical logics.

This is why traditional AI implementations work with logic
description languages.

Problems: • The tasks are usually formulated in a different way.

• There is a trade-off between generality and efficiency.

Features of classical AI solutions

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 42

Base Technology: Logic Programming Language

• Input:
Specification of the problem with a logical description language

• Output:
Response in a logical description language

• Automatically (without specifying algorithms!):
Generation of output from input

• For improvement of efficiency:
Different specifications of the problem are possible and may
influence the output if the automatic generation procedure is well-
understood

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 43

Summary Chapter 1

Symbolic AI Statistical AI

KBS

Neural
Networks

XPS MBR

CBR

Machine
Learning

Swarm AI Ant
Systems

Good applications share several techniques

The set of AI techniques

see critique on PM article

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 44

AI goals for software solutions
• generality

• justification of answers

• flexibility, extensibility

Tools and methods invented and applied in AI

• Logic programming languages (PROLOG)

• Functional programming languages (Lisp)

• Object-oriented programming languages (Smalltalk)

• Distributed technology (neural networks, multi-agent-systems,
 swarm intelligence)

• Concept descriptions (ontologies)

Summary Chapter 1

(only for symbolic AI)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 45

Applications of AI:

• Games where a machine simulates a human player

• Optimisation problems with dynamic parameters

• Resource allocation

• Flexible management of distributed knowledge

• Diagnosis

- Passenger information systems

- Tourist information system

- Medical diagnosis
- Technical diagnosis

- turn-based
- real-time

- Road navigation
- Logistics (TSP, Scheduling)

- Allocation problems with manifold constraints (e.g. class schedule, tourist
information system)

Summary Chapter 1

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 46

Base Technologies of AI:

• Agent oriented software

• Swarm intelligence

• Knowledge-based systems (generalisation of expert systems)

- distributed

- Separation of knowledge and inference engine

- distributed
- autonomous
- proactive

- statistic
- concurrent updating

- Intelligent knowledge acquition and representation

- Main focus: Reusability

Summary Chapter 1

• Neural networks
- Special case of knowledge-based systems, but without explanation component

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 47

• Logic programming languages

• Search strategies

• Semantic network

- Uninformed vs. informed

- Ontologies: Generation and administration of terminology and concepts

- What is specified by man
- How is generated automatically

• Constraint satisfaction problem (CSP)
- Search for valid solutions
- Search for optimal solutions

Summary Chapter 1
Base Technologies of AI:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI1 slide 48

Literature

Stuart Russell / Peter Norvig:
Artificial Intelligence: A Modern
Approach,
Pearson 2010 (3. edition),
ISBN 0-13-207148-7

Symbolic AI in general:

for special fields of AI:

Wolfgang Ertel / Josef Schneeberger: Grundkurs Künstliche Intelligenz
Vieweg 2009 (2. Auflage), ISBN 987-3-8348-0783-0

see my current website and comments

Günter Görz / Josef Schneeberger / Ute Schmid:
Handbuch der Künstlichen Intelligenz
Oldenbourg 2013 (5. Auflage), ISBN 978-3486713077

Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, MIT Press 2016,
available via http://www.deeplearningbook.org/ and FH Wedel handout server (via my website)
Ian Goodfellow, Yoshua Bengio, Aaron Courville:

Machine Learning:

http://www.deeplearningbook.org/

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 2:

Logic- and Rule-Based Programming
Using the Example of Prolog

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 2

Literature for Prolog
Textbooks:

P. Blackburn, J. Bos, K. Striegnitz: Learn Prolog Now!,
 Texts in Computing Vol. 7, King's College Publications. 2006, ISBN 1-904987-17-6.
 Companion website with on-line version: www.learnprolognow.org

Ivan Bratko: PROLOG, Programming for Artificial Intelligence,
 2nd Edition, Pearson 1990, ISBN 0-201-41606-9
 3rd Edition, Pearson 2001, ISBN 0-201-40375-6
 4th Edition, Pearson 2011, ISBN 0-321-41746-6
 Companion website with Prolog code: www.pearsoned.co.uk/bratko

Max Rohde: Eignung logischer Programmiersprachen für Spiele-KI am Beispiel Prolog,
 FH Wedel, Iwanowski, SS 2007, Informatik-Seminar zur Spiele-KI

Peter Bothner / Wolf-Michael Kähler: Programmieren in PROLOG (in German),
 Eine umfassende praxisgerechte Einführung,
 Vieweg 1991, ISBN 3-528-05158-2

gibt auch einen Überblick über Prolog und enthält weiterführende Literaturliste

Eignung logischer Programmiersprachen für Spiele

Seminar presentation (in German):

http://www.learnprolognow.org/

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 3

 Elements of PROLOG

• atoms

Elementary components:

• variables

• predicates

• lists

name where the first character is a small literal

name where the first character is a capital literal, exception: _

terms of the type atom(term), atom(term,term) or ...
2 predicates are equal, if their name is the same atom and the number of
parameters is the same.

[] or [term | list]
short notation: [1,2,3,4] for [1 | [2 | [3 | [4 | []]]]]

• numbers
Integer and real numbers are distinguished (1 ≠ 1.0).

• terms
numbers, atoms, variables, lists or expressions like atom(term), atom(term,term) or ...

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 4

 Elements of PROLOG

Logic operators between predicates:

• conjunction

• implication

• equivalence

• antiequivalence (exor)

a , b corresponds to: a ∧ b

a :- b corresponds to: b → a

a = b corresponds to: b ↔ a

a \= b corresponds to: b ↮ a

• version-specific operators for comfort
member, length, ...

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 5

 Elements of PROLOG

Arithmetic operators

• +, -, *, /, div, mod
Arithmetic expressions are always formed in infix notation.

Evaluation of arithmetic expressions

• not automatically!

• when a variable is assigned an expression
varname is arithmetic expression
Result of the arithmetic expression is assigned to the variable.

• using special logic operators with evaluation capability

<, =<, > >=. =:=, =\= evaluate arithemtic expressions on either side.
(in some implementations only on one side)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 6

 Elements of PROLOG

Knowledge in form of clauses

• facts

• rules

predicate.
Such predicates are assumed to be true in the knowledge base.

predicate :- conjunction of predicates.
The concluding predicate (on the left) is considered true
if the proposition (on the right) has to be assumed true.
For the same concluding predicate there may be different rules.

• queries
?- conjunction of predicates.
Prolog tries to derive the truth of a query from the known facts and rules.
If this derivation is successful, the answer is yes and the values
necessary to bind on a variable for the verification are output.
Otherwise the answer is no.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 7

 Elements of PROLOG

Prolog’s special handling of not

• Most versions of Prolog provide a concept for negation
not Term
\+ Term
Term1 =\= Term2

Prolog evaluates these predicates to true if it cannot prove that Term is
true resp. Term1 = Term2.

Warning:

This is not the same as that Prolog can prove
that Term is false resp. Term1 ≠ Term2

Consequence:

Strict mathematical problem solvers better avoid using negation.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 8

 Functionality of a PROLOG interpreter

PROLOG is knowledge-based:

• Knowledge base

• Inference engine

Facts and rules, dynamically extensible

• Dialog component

deriving facts and rules automatically using the inference
techniques resolution und unification

Input: Query
Output: yes / no, Specification of used unification in case of success, write as a
„side effect“

Yes: The predicate of the query can be concluded from knowledge base.
No: The predicate of the query cannot be concluded from knowledge base.
 No does not imply that it can be concluded that the predicate is false.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 9

 Functionality of a PROLOG interpreter

How the inference engine works:

• Decomposition of a goal into subgoals
First goal is the original query.
Prolog tries to achieve the goal with unifications of the predicates of the knowledge base.
This makes the predicates to subgoals.

• Order of evaluation
All data of the knowledge base are evaluated from top to bottom.
Conjunctions of rule propositions are evaluated from left to right.
The evaluation order does not distinguish between facts and rules.

• Instantiation of variables
Variables are instantiated with values only for the sake of unification.
The current instantiation is removed after definite success or failure of unification with this value.

• Backtracking
Failure of a unification automatically initiates a new instantiation.
Deep backtracking: Try the verification with a different value in the proposition for the same rule.
Shallow Backtracking: Try to verify a different rule implying the same predicate.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 10

 PROLOG: Simple example

father(sven,georg).
brother(holger,anna).
married(sven, anna).

male(X) :- father(X,Y).
male(X) :- brother(X,Y).

uncle(X,Y) :- father(Z,Y), brother(X,Z).
uncle(X,Y) :- mother(Z,Y), brother(X,Z).
mother(X,Y) :- father(Z,Y), married(X,Z).
female(X) :- married(X,Z), male(Z).
married(X,Y) :- married(Y,X).

• Predicate world from first semester:
Knowledge base:

Queries:

isMarried(X,Y) :- married(X,Y).
isMarried(X,Y) :- married(Y,X).

better:

?- isMarried(holger,X).

In ISO-Prolog this does not work!

Declarative alternative
without problems with
symmetric predicates: XSB
http://xsb.sourceforge.net/

?-female(anna).
?-male(georg).
?-uncle(holger,georg).
?-male(X).
?-married(holger,X).

http://xsb.sourceforge.net/

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 11

 PROLOG: More complicated example
• 8 queens problem (1st solution of Bratko)

Knowledge base:
queens1([]).

queens1([X/Y | Others]) :-
 queens1(Others),
 member(Y,[1,2,3,4,5,6,7,8]),
 conflictFree(X/Y,Others).

conflictFree(_,[]).

conflictFree(X/Y, [HeadX/HeadY | Others]) :-
 Y =\= HeadY,
 DiffY is HeadY - Y,
 DiffY =\= HeadX - X,
 DiffY =\= X - HeadX,
 conflictFree(X/Y,Others).

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).

Query:
query for a single answer:
?-template(S), queens1(S).

not: DiffY =:= HeadY-Y
not: HeadY - Y =\= HeadX-X

query for all answers:
?-template(S), queens1(S), write(S), nl, fail.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 12

Base Technology: Logic Programming Language

• Input:
Specification of the problem with a logical description language

• Output:
Response in a logical description language

• Automatically (without specifying algorithms!):
Generation of output from input

• For improvement of efficiency:
Different specifications of the problem are possible and may
influence the output if the automatic generation procedure is well-
understood

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 13

Original goal: Construction task
Given a set ℱ of logic formulae. Determine all formulae that can be logically derived from ℱ .

Easier goal: Verification task
Given a set ℱ of logic formulae and a (new) logic formula F.
Find out if F can be derived from ℱ .

Problems equivalent to the verification task:
1) Given a set ℱ of logic formulae and a (new) formula F. Find out if the set {¬F} ∪ ℱ is

contradictory.

2) Given a set ℱ of logic formulae. Find out if it is contradictory.

Chances to simplify the problem:
Restrict the class of admissible formulae !

not decidable for arbitrary formulae Corresponds to satisfiability problem:

not decidable for arbitrary formulae

less than ever not decidable
for arbitrary formulae

Task for the interpreter:

 Logic programming languages

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 14

 Propositional formulae

• A propositional formula on truth values is a combination of finitely
many literals with operators of propositional logics.

• The instantiation of a formula is an assignment of values true or
false to all literals such that the same literals achieve the same value.

• A formula is satisfiable if there is an instantiation such that the
formula evaluates to true.

• The literals are variables which may assume exactly one of two values.

• The satisfiability problem of propositional logics is always solvable
because there are only finitely many combinations in the potential
solution space which may be tested successively.

• Unfortunately, successive testing takes very long time (exponential in the
number of literals). Until now no more efficient algorithm is known.

Problem is NP-complete !

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 15

 Predicate logics (first order)

Predicate logics extends propositional logics by the following:

• predicates

• functions

• propositions depending on variables.
If a proposition depends on k variables, it is called k-ary.

• unique assignments depending on variables
(if a function depends on k variables, it is called k-ary)

• 0-ary functions are constants.

• quantors
• existence quantor (∃) und all quantor (∀)

• Quantors must be applied to variables only (otherwise not first order)

• variables
• correspond to the literals of propositional logics,

but may assume one out of a set of arbitrarily many values

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 16

 Predicate logics (first order)

A predicate logic formula (first order) is built by the following rules:

• A term is a variable or a k-ary function (using any symbol for the
function name)

• A formula is a k-ary predicate with arbitrary terms as input or the
conjunction, disjunction or negation thereof.

• A formula may also contain quantors applied to variables

Ex.: formula φ = x (R(f(y), g(z,y))  y (P(g(y,z), x)  R(y, z)))
Green occurrences of y and z are free.
Red occurences of variables are bound.

Closed formulae (constants): Formulae not containing any free variable.

Open formulae (without quantors): Formulae not containing any bound variable.

Atomic formulae: Formulae consisting of one predicate involving terms only (no
disjunctions, conjunctions or negations)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 17

 Predicate logics (first order)

• The instantiation of a formula is an assignment of values to the
free variables from predefined domains of definition such that
the same variables achieve the same values.

The general problem is unsolvable !

• In predicate logics, the satisfiability problem is not decidable, i.e. no
algorithm may ever exist to decide for an arbitrary formula as input if
the formula is satisfiable or not.

Is there a work-about ?
Yes, solve a more specific problem !


• A formula is satisfiable if there is an instantiation such that the

formula evaluates to true.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 18

PROLOG does not accept arbitrary predicate formulae:

Proposition (Completeness of Horn clause calculus):

For each set of old Horn clauses and a given new Horn clause, Prolog may decide after
finite time if the new clause can be concluded from the old clauses or not.

Remark „Finite time“ includes „very long“ !

• no quantors

p ∧ q ∧ . . . ∧ r → x

Rule (Horn clause)




In the assumption there may be a
conjunction of positive literals only.

Power of Prolog

• In CNF, all clauses must be Horn clauses:

¬p ∨ ¬q ∨ . . . ∨ ¬r ∨ x At most one literal is positive

• Domains for variables and functions are arbitrary.

Rule-based notation of Horn clauses:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 19

 Use of Prolog
Didactic use:

• good exercise for dealing with formal logics

• exercising recursive formulations of problems and algorithms

Practical use:

• good for a quick test of concepts (rapid prototyping)

• relatively comfortable for simple problems for which no other solution
exists than exhaustive search of all possibilities

• suitable for successive and systematic output of all possible
solutions of a search problem

Limits:
• Rather a toy than a tool of commercial use, too far from practical needs

• totally useless if efficiency of solution is relevant

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 3:

Algorithmic Methods of AI

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 2

Search Strategies

Relevance of search strategies for knowledge-based systems:

 All problem solvers search

KBS

Knowledge Base

Problem Solver

The problem solver nearly always has to solve
a satisfiability problem for constraints of the knowledge base!

Relevance of search strategies for logic problems:

Search for a solution of the satisfiability problem

if the knowledge
is not case-based

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 3

 Example for a knowledge-based search engine:
PROLOG

PROLOG is knowledge-based:

• Knowledge base

• Inference engine („Problem Solver“)

Facts and rules, dynamically extensible

• Dialog component

deriving facts and rules automatically

Input: Query
Output: yes / no, specification of unification applied in case of success,
 write as a „side effect“

Yes: The predicate of the query can be concluded from knowledge base.
No: The predicate of the query cannot be concluded from knowledge base.
 „No“ does not imply that it can be concluded that the predicate is false.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 4

Application: Class Scheduling
Given finite sets Courses, Rooms, Time slots
Task: Generate an injective (one-to-one) function C → RxT

Strict Constraints (must be fulfilled in any case):
• Certain courses must not take place at the same time.

• For some courses, certain time slots are not admitted.

• For some courses, certain rooms are not admitted.

Soft constraints (may be violated):
• Certain courses should not take place at some times.

• Certain courses should take place successively.

• Certain courses should not take place on the same day.

Optimisation function:
• fewest violations of soft criteria

• fewest free periods for certain study programmes

• most uniform distribution on different days for ...

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 5

Application: Traveling Salesman Problem (TSP)
Given: Graph with node set V and weighted edges between the nodes

Task: Find a round trip traversing the graph edges reaching each node at least once.

Optimisation function:
• Minimise the global edge costs !

Generalisation in logistic applications:

Constraints:
• Only edges of the graph are to be used.

Constraints:
• Load and destribute goods obeying capacity restrictions !
• Consider time windows in which delivery may take place !

Soft criteria (may be violated):
• Certain edges have to be avoided.

• Certain time windows are unfavourable.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 6

Application: Shortest Path Problem

Task: For two selected nodes S and T, find a path through the graph.

Generalisation in transport applications (public or individual):

Constraints:
• Edge costs depend on the time used.
• Travelors are subject to individual contraints that may value certain edges in

a different way or make them even unusable.

Given: Graph with node set V and weighted edges between the nodes

Optimisation function:
• Minimise the global edge costs !

Constraints:
• Only edges of the graph are to be used.

Soft criteria (may be violated):
• Certain edges have to be avoided

• Certain time windows are unfavourable

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 7

Constraint Satisfaction Problem (CSP)
Specification of a CSP:

• set of variables
• domains of definition
• constraints: relations between variables (strict or soft)

(nomally, equations or inequalities)

• optimisation criterion
(normally, a real-valued function on the variables which has to be minimised or
maximised)

valid solution:
 assignment of values to all variables such that all strict constraints are satisfied

optimal solution:
 valid solution optimising the optimisation criterion

Constraint Solvers are programs which find a valid or even optimal
solution for a given CSP automatically.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 8

Traversing search graphs
1. search method: Find a global solution via partial solutions

• Node: describes state in search domain

• Initial node: initial state

• Edge: transition of a state into a subsequent state

• Final node: final state wanted (problem solution)

(is always unique)

(several ones are admissible)

(usually feasible in one direction only)

• State: Assigning values to variables

• Subsequent state: Assign a value to a new variable
 keeping the values for the already assigned variables

• Initial node: No variable has got a value.

• Final node: All specified variables have got admissible values.

Each state has got an evaluation.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 9

Which node has to be expanded next?

Different search strategies differ in:

• Search graph is a search tree
(makes the path from initial node to each final node unique)

Special case:

• Expansion of a node: Compute all subsequent resp. adjacent nodes

Different search goals are possible:

1) Find some solution or detect that there is none.
2) Find further solutions or detect that there are none.

4) Find an optimal solution or at least a rather good one.

Traversing search graphs

3) Find all solutions.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 10

1) (2 < x < 4)

2) (0 < y < 6)

3) (x + y > 7)

4) (x ∙ y < 10.5)

for bounded k:
• finite search space

• several valid solutions

• always 1 optimal solution

for unbounded k:

• infinite search space

• infinitely many valid solutions

• no optimal solution

 Example for search trees in CSP
Constraint system: Domain of definition

for valid solutions:
Optimisation
criterion:

x,y ∈ Q,
at most k positions after the decimal point

Minimise |y – x|

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 11

 Example for search trees in CSP

1) (2 < x < 4)

2) (0 < y < 6)

3) (x + y > 7)

4) (x ∙ y < 10.5)

x,y ∈ Q,
at most k positions after the decimal point

Constraint system: Domain of definition
for valid solutions:

Optimisation
criterion:

Minimise |y – x|

CSP variables:
• Assign values to the 8 variables x0 ,x1, x2, x3 and y0 ,y1, y2, y3
 where x = x0 . x1 x2 x3 and y = y0 . y1 y2 y3
 and xi and yi are the respective decimal digits (integer numbers between 0 and 9).

Nodes and successor definitions:
• Each node in the search network assigns either the same number of digits for

x as for y with values (type 1) or one digit more for y than for x (type 2).

• A successor of type 1 is a node of type 2 with the same values as the
predecessor plus one more value for a digit for y.

• A successor of type 2 is a node of type 1 with the same values as the
predecessor plus one more value for a digit for x

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 12

 Example for search trees in CSP

1) (2 < x < 4)

2) (0 < y < 6)

3) (x + y > 7)

4) (x ∙ y < 10.5)

x,y ∈ Q,
at most k positions after the decimal point

Constraint system: Domain of definition
for valid solutions:

Optimisation
criterion:

Minimise |y – x|

Nodes and successor definitions:
• Each node in the search network assigns either the same number of digits for

x as for y with values (type 1) or one digit more for y than for x (type 2).

• A successor of type 1 is a node of type 2 with the same values as the
predecessor plus one more value for a digit for y.

• A successor of type 2 is a node of type 1 with the same values as the
predecessor plus one more value for a digit for x

Optimum expansion strategy for this problem:
• The initial node assigns x0=2, y0=4 (type 1). All other digits are not yet assigned.

• Expand the initial node and the successors such that you come to the optimal
solution (x=2.176, y=4.825) fastest possible.

depends on
good luck

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 13

Uninformed Search Strategies

In general, only blind (uninformed) search is possible:

There is no information about good search search directions (the target is only recognised on
arrival)

Systematic search strategies:

1. breadth first search

2. depth first search

3. best first search

Possible expansion strategies:
• Valid nodes are expanded first.

• The rightmost valid node on the next level is expanded.

• ...

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 14

breadth first search:

Exponential time and space

for AI search procedures not relevant in most cases

problem size: depth of search tree

Uninformed Search Strategies

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 15

depth first search:

Exponential time

Linear space

The „normal case“ for standard AI procedures

problem size: depth of search tree

Uninformed Search Strategies

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 16

bounded depth first search:

• Execute depth first search
only up to limited search
level.

• If not successful, increase
limit for search level and
start depth first search
again.

Uninformed Search Strategies

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 17

best first search:

Exponential effort for time and space

• Additional information: Evaluation label for the nodes.

• Expand the node with best evaluation first.

In the worst case this is no better than breadth first search:

For good evaluation functions, the avarage case is much better!

Example: Special case „Shortest Path Problem“:

 Dijkstra‘s algorithm (quadratic effort for time, linear for space)

For special problems, even the worst case is much better:

 Mixture of depth first and breadth first searches

Problem size:

Depth of search tree

Problem size: Number of nodes

• Search target: Find the best solution first (and the others later).

Uninformed Search Strategies

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 18

Dijkstra‘s algorithm for weighted graphs

Requirement for edge weights: All lengths have to be nonnegative.

(special case of best first search)

• Put S into the set Done. Label S by distance(S) := 0.
Put all other nodes into the set YetToCompute.
Label all neighbors N of S by distance (N) := length (S,N)
and all other nodes by distance (V) := ∞.

• Repeat:
 Choose node V from YetToCompute with minimum distance (V)
 and shift V to the set Done.
 Update all neighbors N of V that are still in YetToCompute:
 distance (N) := min {distance (N), distance (V) + length (V,N)}.
until V = T

Algorithm for the search of a path from S to T having minimal global edge length:

For all edges (u,v) there is a weight function:
length (u,v) := length of an edge from node u to node v

Uninformed Search Strategies

Proposition: This algorithm expands all nodes with a path length shorter than to T.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 19

4

5

10

2

7

1

6 9

5

13

4
1

5

B C

Z

E F

G

D

A

Example for Dijkstra‘s algorithm

Shortest path from G to Z: G  E  Z (13 units)

A(5,G)
B(2,G)
C(1,G)
D(∞)
E(9,G)
F(6,G)
Z(∞)

A(5,G)
B(2,G)

D(∞)
E(9,G)
F(6,G)
Z(14,C)

A(5,G)

D(∞)
E(9,G)
F(6,G)
Z(14,C)

D(∞)
E(9,G)

Z(14,C)

D(14,E)

Z(13,E)

D(∞)
E(9,G)

Z(14,C)
F(6,G)

Node (distance from G, direct predecessor):

    

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 20

Informed (Heuristic) Search Strategies

Distance function h(state) being an estimated measure for the real distance to the target

• easily computable

• but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

Given the following kind of information for weighted graphs:

Application: „Hill climbing“

• Informed add-on to depth first search:

• Among the possible candidates, expand the node with best heuristic value.

• In case of backtracking expand the next best node respectively.

Main problem: Long halt in local maxima

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 21

Application: Optimistic hill climbing

• Special case of informed add-on to depth first search

• Expand only the node with best heuristic value.

• Backtracking is omitted: If heuristic value was wrong, the best result will not be found.

Main problem: Getting stuck in local maxima

Informed (Heuristic) Search Strategies

Given the following kind of information for weighted graphs:

Distance function h(state) being an estimated measure for the real distance to the target

• easily computable

• but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 22

Application: A* algorithm

• Informed add-on to best first search

• Expand the node where the sum of node label plus heuristic function is minimum.

 Weitere Infos für die Anwendung von A* in öffentlichen Verkehrsnetzen:
 Seminarvortrag und Ausarbeitung von Stefan Görlich, SS 2005, Nr. 5
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

Informed (Heuristic) Search Strategies

Given the following kind of information for weighted graphs:

Distance function h(state) being an estimated measure for the real distance to the target

• easily computable

• but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 23

A* algorithm for weighted graphs

Requirement for edge weights: All edge lengths must be nonnegative.

(Generalisation of Dijkstra‘s algorithm)

hT(u) ≤ dT(u)
Requirement for heuristic function hT(u) for estimating the real distance dT(u) to target node T:

(State evaluation = Node evaluation)

Admissibility:
hT(u) ≤ hT(v) + length(u,v) Monotonicity:

Informed (Heuristic) Search Strategies

• Put S into the set Done. Label S by distance(S) := 0.
Put all other nodes into the set YetToCompute.
Label all neighbors N of S by distance (N) := length (S,N) and
 estimatedTotal (N) := distance (N) + hT(N)
and all other nodes by distance (V) := ∞ and estimatedTotal (V) := ∞.

• Repeat:
 Choose node V from YetToCompute with minimum estimatedTotal (V)
 and shift V to the set Done.
 Update all neighbors N of V that are still in YetToCompute:
 distance (N) := min {distance (N), distance (V) + length (V,N)}.
 estimatedTotal (N) := distance (N) + hT(N) (if update is necessary).
until V = T

Algorithm for the search of a path from S to T having minimal global edge length:

Proposition: This algorithm expands all nodes with an estimatedTotal shorter than to T.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 24

4

5

10

2

7

1

6 9

5

13

4
1

5

B C

Z

E F

G

D

A

Example for A* algorithm

Shortest path from G to Z: G  E  Z (13 units)

A(5,G,15)
B(2,G,9)
C(1,G,5)
D(∞)
E(9,G,12)
F(6,G,13)
Z(∞)

Node (real distance from G, direct predecessor, estimated total to target):

  

10

7

8

5

4

3 1

estimated distance to target Z

A(5,G,15)
B(2,G,9)

D(∞)
E(9,G,12)
F(6,G,14)
Z(14,C,14)

0

A(5,G,15)

D(∞)
E(9,G,12)
F(6,G,14)
Z(14,C,14)

A(5,G,15)

D(14,E,15)

F(6,G,14)
Z(13,E,13)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 25

hB(u) ≤ hB(v) + length(u,v) What happens if monotonicity is abandoned ?

Error: D will not be updated anymore because it is already in Done

Example:

Aus: Diplomarbeit Andre Keller (SS 2008)

A* algorithm for weighted graphs

Requirement for edge weights: All edge lengths must be nonnegative.

(Generalisation of Dijkstra‘s algorithm)

hB(u) ≤ dB(u)
Requirement for heuristic function hB(u) for estimating the real distance dB(u) to target node B:

Admissability:

Informed (Heuristic) Search Strategies

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 26

A* algorithm for weighted graphs

Requirement for edge weights: All edge lengths must be nonnegative.

(Generalisation of Dijkstra‘s algorithm)

hT(u) ≤ dT(u)
Requirement for heuristic function hT(u) for estimating the real distance dT(u) to target node T:

(State evaluation = Node evaluation)

Admissability only:

Informed (Heuristic) Search Strategies

• Put S into the set Done. Label S by distance(S) := 0.
Put all other nodes into the set YetToCompute.
Label all neighbors N of S by distance (N) := length (S,N) and
 estimatedTotal (N) := distance (N) + hT(N)
and all other nodes by distance (V) := ∞ and estimatedTotal (V) := ∞.

• Repeat:
 Choose node V from YetToCompute with minimum estimatedTotal (V)
 and shift V to the set Done.
 Update all neighbors N of V from Done and YetToCompute:
 distance (N) := min {distance (N), distance (V) + length (V,N)}.
 estimatedTotal (N) := distance (N) + hT(N) (if update is necessary).
 If an update occurred to a neighbor N* of Done: Shift N* back to YetToCompute
until V = T

Algorithm for the search of a path from S to T having minimal global edge length:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 27

Pruning search space strategies

1. Partial Testing

2. Forward Checking

• Test constraints having variables only that have already assigned values.
• States in which some constraints are violated already may not be

expanded further, but rather traced back. If there are no descendant
nodes anymore and no solution is found, the inference must trace back.

• Reduce all domains for variables not assigned such that the future
assignment still has a chance to be feasible.

• Trace back if this leads to empty domains.

For the 1. search method introduced so far:
 Approaching global solutions via partial solutions:
Any strategy must backtrack to earlier assignment stages in the search tree
when no solution can be found with the current assignments. It should be
avoided to do this only when all assignments have been explicitely performed.

Strategies for pruning the search space:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 28

?-queens2(YList).

queens2(YList) :-
 permutation([1,2,3,4,5,6,7,8], YList),
 admissible(YList).

permutation([],[]).
permutation([First|Tail],ResultList) :-
 permutation(Tail,ResultTail),
 del(First,ResultList,ResultTail).

admissible([]).
admissible([Y1|Others]) :-
 admissible(Others),
 conflictFree(Y1,Others,1).

conflictFree(_,[],_).

conflictFree(Y, [Y1|YTail], XDiff) :-
 YDiff is Y1-Y,
 YDiff =\= XDiff,
 YDiff =\= -XDiff,
 XDiff1 is XDiff + 1,
 conflictFree(Y,YTail,XDiff1).

8-queens-problem (solution by Bratko, 2nd method)

Example for not pruning at all:

Query:
Knowledge base:

Pruning search space strategies

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 29

Knowledge base:
queens1([]).

queens1([X/Y | Others]) :-
 queens1(Others),
 member(Y,[1,2,3,4,5,6,7,8]),
 conflictFree(X/Y,Others).

conflictFree(_,[]).

conflictFree(X/Y, [HeadX/HeadY | Others]) :-
 Y =\= HeadY,
 DiffY is HeadY - Y,
 DiffY =\= HeadX - X,
 DiffY =\= X - HeadX,
 conflictFree(X/Y,Others).

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).

8-queens-problem (solution by Bratko, 1st method)

Example for partial testing:

Query:

?- template(S), queens1(S).

Pruning search space strategies

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 30

8-queens-problem (solution by Bratko, 3rd method)

Knowledge base: Query:

?-queens3(YList). queens3(YList) :-
 sol(YList, [1,2,3,4,5,6,7,8],
 [1,2,3,4,5,6,7,8],
 [-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7],
 [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]).

sol([],[], DomainY, DomainU, DomainV).

sol([Y |YTail], [X | XTail], DomainY, DomainU, DomainV) :-
 del(Y,DomainY,ReducedDomainY),
 U is X - Y,
 del(U,DomainU,ReducedDomainU),
 V is X + Y,
 del(V,DomainV,ReducedDomainV),
 sol(YTail, XTail, ReducedDomainY, ReducedDomainU,
ReducedDomainV).

del(Item, [Item|List], List).
del(Item, [First|Tail],[First|ResultTail]) :-
 del(Item,Tail,ResultTail).

Example for forward checking:
Pruning search space strategies

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 31

Traversing search graphs
Alternative 2. search method:
 Systematic improvement of preliminary (global) solutions

• Edge: Transition of a state into an adjacent state
(usually feasible in both directions)

• State: Assignment of values to all variables
(not all of them need be admissible)

• Adjacent state: New values for certain variables
 keeping all values for the other variables

• Initial node: Start with any assignment to the variables.

• Final node: No adjacent state has got a better evaluation than the present one.

Each state has got an evaluation.

• Node: describes state in search domain

• Initial node: initial state (is always unique)

• Final node: final state wanted (problem solution)
(several ones are admissible)

(or apply a reasonable starting heuristic)

(or some heuristic function is achieved)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 32

Idea:

• Start with an arbitrary assignment of values (valid or not).

• Assign new values for certain variables such that the new assignment bares
fewer conflicts than the old one.

Advantages:

• happens to show good run time behaviour

• „repair strategy“ if something changes dynamically

Disadvantages:

• „Getting stuck“ in local minima

• counter measures: random walk, tabu list, ...

Min-Conflicts procedure:

 Weitere Details zum Thema Constraintsysteme:
 Seminarvortrag und Ausarbeitung von Stefan Schmidt, SS 2005, Nr. 6,
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

For the 2. search method of systematic improvement:
General Optimisation Methods for CSP

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 33

Application: 8-queens-problem

 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

General Optimisation Methods for CSP

Min-Conflicts procedure:
For the 2. search method of systematic improvement:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 34

 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

General Optimisation Methods for CSP

Application: 8-queens-problem

Min-Conflicts procedure:
For the 2. search method of systematic improvement:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 35

 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

General Optimisation Methods for CSP

Application: 8-queens-problem

Min-Conflicts procedure:
For the 2. search method of systematic improvement:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 36

 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

General Optimisation Methods for CSP

Application: 8-queens-problem

Min-Conflicts procedure:
For the 2. search method of systematic improvement:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 37

 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

General Optimisation Methods for CSP

Application: 8-queens-problem

Min-Conflicts procedure:
For the 2. search method of systematic improvement:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 38

 Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
 http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

General Optimisation Methods for CSP

Application: 8-queens-problem

Min-Conflicts procedure:
For the 2. search method of systematic improvement:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 39

Working with tabu lists in search graphs:
• Determine a certain validity range for the algorithm,

e.g. by a given number of operations

• Protocol all edges used in a transition from one state
to another

• All edges used within the previous validity range are
not to be used again, neither their counterdirection.

These methods will mainly be used in improvements of global solutions
• Good results in logistics (TSP generalisations)

General Optimisation Methods for CSP

Further enhancement: Simulated annealing
• Admit temporary deteriorations.

• Diminish the tolerance bound for deterioration in the course of algorithmic
progress gradually.

For the 2. search method of systematic improvement:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 4:

Knowledge-Based Systems

4.1: Representation and Classification of Knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 2

Representation of knowledge: How ?

knowledge + problem solver = KBS

data processing rules

logic knowledge:
atoms

facts

rules
if ... then ...

derivation rules
resolution, unification

functional knowledge:

data functions function evaluation

object-oriented knowledge:

objects methods compiler / interpreter

declarative procedural control knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 3

 deep vs. shallow

 certain vs. uncertain

 exact vs. fuzzy

Classification of knowledge: What ?

The following criteria are mutually independent:

(consider the probability of a statement)

(consider the accuracy of a statement)

(consider how a statement is composed of smaller units)

model-based vs. universally valid

deterministically vs. probabilistically

quantitative vs. qualitative

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 4

• The train comes in 10 minutes.

• The train comes in about 10 minutes.

• The train comes probably in 10 minutes.

• The train comes probably in about 10 minutes.

• The probability that the train comes in 10 minutes is 0.9.

• The plausibility range of the hypothesis that the train comes in 10 minutes is in (0,05; 0,95).

Classification of knowledge: What ?

Example for distinguishing probability from accuracy:

certain, exact

certain, fuzzy

uncertain, exact

uncertain, fuzzy

uncertain, exact

uncertain, exact

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 5

m

20° 30° 40° 50° Temp

m

20° 30° 40° 50° Temp

Fuzzy sets as example for qualitative knowledge

exact set

fuzzy set

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004

Classification of knowledge: What ?

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 6

fuzzy set
Gaussian

fuzzy set
trapezoid

fuzzy set
triangle

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004

Classification of knowledge: What ?

Fuzzy sets as example for qualitative knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 7

The linguistic variable „temperature“

m

1

0
0 100 temperature

very low low hot very hot medium warm

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004

Classification of knowledge: What ?

Fuzzy sets as example for qualitative knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 8

Prinziple of fuzzy technology:
certain value

fuzzy set

fuzzy set

certain value

measurement

setting

fuzzification

fuzzy operations

defuzzification

Classification of knowledge: What ?

Fuzzy operations:
operators for building new sets from old ones

rules for mapping sets to other sets

Fuzzy sets as example for qualitative knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 9

 µC(x) = min {µA(x), µB(x)} x  X

 µC(x) = max {µA(x), µB(x)} x  X

 µC(x) = 1 - µA(x) x  X

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004

Examples for fuzzy operators:

Classification of knowledge: What ?

Fuzzy sets as example for qualitative knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 10

 µC (x) =  min{µA(x), µB(x)} + ½ (1 - )(µA(x) + µB(x)) (  [0,1])

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004

you can have it more complicated:

What does this function compute ?

Classification of knowledge: What ?

Fuzzy sets as example for qualitative knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 11

if (distance = small)
and (velocity = large),
then (braking power = large)

if (distance = medium)
and (velocity = large),
then (braking power = medium)

aus Wissensbasierte Systeme, Vorlesung 2, FH Deggendorf, 2004

Example for fuzzy rules:

Classification of knowledge: What ?

Fuzzy sets as example for qualitative knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 12

Allen‘s interval logic for the qualitative representation of time intervals

1. STARTS(t1,t2)

 t1 starts with t2 but ends before t2

2. FINISHES(t1,t2)

 t1 ends with t2 but starts after t2

3. DURING(t1,t2)

 t2 contains t1 completely

4. BEFORE(t1,t2)

 t1 starts before t2, and t1 and t2 do not overlap or contain each other

5. OVERLAP(t1,t2)

 t1 starts before t2 and ends after the start of t2 and before the end of t2

6. MEETS(t1,t2)

 t1 starts before t2 and ends when t2 starts

7. EQUAL(t1,t2)

 t1 and t2 denote the same interval

Classification of knowledge: What ?
Representation of temporal knowledge

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 13

Representation of spatial knowledge

Classification of knowledge: What ?

exact knowledge about an object

 geo coordinates in angle and degree (or floating point representation of the angle)

 relative distance of objects in m (with distance between the objects and relative angle)

qualitative knowledge about an object

 geo cell in which the object is located

 relative order (in front of, behind, left of, right of, etc.)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 14

Practical problem for temporal and spatial knowledge:

Classification of knowledge: What ?

How exact should the knowledge be ?

 year, month, day, hour, second, millisecond, ...

 country, city, address, exact geo coordinates with certain digits, ...

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 15

Summary:
knowledge representation and classification

Various forms of knowledge representation

Various qualities of knowledge

• object-oriented: frames, semantic networks

• logical: production rules

• functional: constraints

• deep vs. shallow (consider how a statement is composed of smaller units)

• certain vs. uncertain (consider the probability of a statement)

• exact vs. fuzzy (consider the accuracy of a statement)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 4:

Knowledge-Based Systems

4.2: Rule-Based Reasoning

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 2

Run time system:

Application from practice: Technical diagnosis

Input:

Output:

(knowledge-based systems call this problem solver / inference engine)

This is where diagnostic systems do not differ !

• Setting certain control inputs
• Observing values depending on this setting

• A unique instruction how to repair which component

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 3

Knowledge-based diagnosis:

1) Knowledge acquisition: Input into knowledge base

2) Knowledge structure
• depends on knowledge acquisition

• model-based

This is where diagnostic systems may differ !

• rule-based (symptom-based)

• case-based

3) Knowledge processing be the problem solver
• depends on knowledge structure

as alternatives

Application from practice: Technical diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 4

• Causing and manifest faults for the overall system

Input to knowledge base:

• Possible symptoms (measurements)
• Relations between faults and symptoms (rules)

- Symptoms may confirm a fault or even explain it.
- Symptoms may exclude a fault.

• Semantic network

• Feasible structures:

Structure of knowledge base:

- Fault networks (trees)
- Decision trees

This is „classical“ expert system technology

1. Symptom-Based Diagnosis

Task of inference engine:
• Navigation in semantic network

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 5

Example for elements of the knowledge base:

Overall System

Component 1 Component 2

Fault 1.2

Fault 1.1

Fault 2.2

Fault 2.1 causes

Symptom
0≤x≤10

Symptom
x>10

Symptom
y>10

consists of consists of

contains contains

explains explains excludes

observation x=3 observation y=20

Elements for causal inference chain

1. Symptom-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 6

Example for a fault tree:

battery flaw

engine does not start

Symptom:
control lamp

not lit

possibly caused by

starter flaw

possibly caused by

battery discharged

Symptom:
push-starting works

explains

excludes

...

loose wire

possibly caused by possibly caused by

ignition flaw

possibly caused by

possibly caused by

Symptom:
starter does

not click

explains

1. Symptom-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 7

Example for a decision tree:

Does the starter try
to start the engine?

Is the control lamp lit? Does the starter click?

yes no

yes no yes no

1. Symptom-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 8

• Navigation in semantic network
(e.g. fault tree or decision tree)

• Possible start points of navigation:

• Main task is evaluating and firing of rules:
- Insert a concluded result of one rule into the antecedent of another rule.

Job of inference engine:

- Work with probabilities and fuzzy rules.

Such input must be allowed for knowledge acquisition.

- Suspected faults

- Observed symptoms

1. Symptom-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 9

Advantages and Disadvantages:

• Knowledge structure complies to terminology of experts.

• Knowledge is stored very goal-oriented.

- An expert can easily handle the knowledge acquisition component.
- Knowledge acquisition costs a lot of time.

- Diagnosis of run time component is fast.
- Knowledge base may not easily be altered.
- Reusability is a fundamental problem.
- There are methods for reusing parts of knowledge though.

1. Symptom-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI42 slide 10

Advantages und Disadvantages:

- Knowledge base is often not complete.

• Knowledge base does not contain deep knowledge.
- Every application domain is feasible in principle.

- Knowledge base is confusing and is thus not easily verifiable.

A lot of knowledge bases contain faults.

1. Symptom-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 4:

Knowledge-Based Systems

4.3: Model-Based Reasoning

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 2

• reasonable response time of problem solver at run time

Challenge:

3. Model-Based Diagnosis

Goal:
• fast knowledge acquisition
• exact and provable solution of problem solver

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 3

System model:

Which components of which type are
connected in which way?

component model
• normal behaviour
• fault behaviour

Component models:

How do values depend on each other
lying at ports of the component?

 available from CAD data

 to be modeled once per component type

Model is reusable for all systems containing
components of this type.

3. Model-Based Diagnosis

component port link

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 4

• system model: hierarchical structure of the system (+ how the components are connected)

Input to knowledge base:

• component models

• constraint network (assembled automatically)

• structured by:

Structure of knowledge base:

- assigning constraints to components and ports
- assigning variables to components and ports

3. Model-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 5

system
model

component model
• normal behaviour
• fault behaviour

system
structure +

Fault assumption
is the correct diagnosis.

simulate
assuming

a fault mode

measurement

yes consistent?

no

revise fault assumption

knowledge base

automatically
knowledge processing:

Base functionality: Conflict driven search

3. Model-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 6

Problem:
• ‚brute-force‘ Simulation of all fault assumptions

combinatorically not feasible

Idea: General Diagnostic Engine GDE, deKleer & Williams 1987
• intelligent search in the space of all fault assumptions
• uses inconsistent assumptions for pruning the search space
• base principle: conflict-driven search

GDE 1987: The prototype for model-based diagnosis

3. Model-Based Diagnosis

Base functionality: Finding consistent assumptions

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 7

component models
• multiplier: mode=ok  out = in1 * in2
• adder: mode=ok  out = in1 + in2

measurements: g = 10  h = 12

system model

M1

M2

M3

A1

A2

g

h
z

y

x a = 2

b = 3

c = 2

d = 3

e = 2

f = 3

GDE - Example

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 8

GDE - Example

system model

g = 10

h = 12
z

y

x a = 2

b = 3

c = 2

d = 3

e = 2

f = 3

A1

A2

M1

M2

M3

diagnoses:
single-fault M1
single-fault A1
double fault M2 M3
 :

M1 M2 M3 A1 A2
 x x x
 x x x x

two conflicts

simulation

y = 6 {A2 M3}
h = 10 {M1 A1 A2 M3}, h = 12

z = 6 {M3}
y = 6 {M2}

y = 4 {M1 A1}
g = 12 {M1 M2 A1}, g =10

x = 6 {M1}

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 9

Modeling a simple electric circuit in a first shot

L1 L2 L3 B

component types: Battery
Lamp
Wire
Junction (3)

ports

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 10

Models of electric components:

Battery:

ok ⇒ (minus = ground)

minus plus

ok ⇒ (plus = supply voltage)

a1 a2
Wire:

ok ∧ (a1 = ground) ⇒ (a2 = ground)
ok ∧ (a1 = supply voltage) ⇒ (a2 = supply voltage)

ok ∧ (a2 = supply voltage) ⇒ (a1 = supply voltage)
ok ∧ (a2 = ground) ⇒ (a1 = ground)

minus, plus ∈ { ground, supply voltage } value ranges:

rules:

a1, a2 ∈ { ground, supply voltage } value ranges:

rules:

Model-Based Diagnosis: Base functionality

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 11

Lamp:
a1 a2 z

ok ∧ (a1 = supply voltage) ∧ (a2 = ground) ⇒ (z = lit)
ok ∧ (a2 = supply voltage) ∧ (a1 = ground) ⇒ (z = lit)
ok ∧ (a1 = supply voltage) ∧ (a2 = supply voltage) ⇒ (z = dark)
ok ∧ (a1 = ground) ∧ (a2 = ground) ⇒ (z = dark)

ok ∧ (a1 = ground) ∧ (z = dark) ⇒ (a2 = ground)

ok ∧ (a1 = ground) ∧ (z = lit) ⇒ (a2 = supply voltage)

ok ∧ (a2 = ground) ∧ (z = lit) ⇒ (a1 = supply voltage)

ok ∧ (a1 = supply voltage) ∧ (z = lit) ⇒ (a2 = ground)

ok ∧ (a2 = supply voltage) ∧ (z = lit) ⇒ (a1 = ground)

ok ∧ (a1 = supply voltage) ∧ (z = dark) ⇒ (a2 = supply voltage)

ok ∧ (a2 = ground) ∧ (z = dark) ⇒ (a1 = ground)
ok ∧ (a2 = supply voltage) ∧ (z = dark) ⇒ (a1 = supply voltage)

a1, a2 ∈ { ground, supply voltage }

value ranges:

z ∈ { lit, dark } rules:

Model-Based Diagnosis: Base functionality
Models of electric components:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 12

Composing the system model from the component models:
m

in
us

pl

us
 a1 a2 a1 a2 a1 a2

a1 a2 a1 a2 a1 a2

a1

a2

z

a1

a2

z

a1

a2

z L1 L2 L3 B

Values at connecting ports must be the same from both sides.
In case of contradiction: Conflict between the behavioural modes predicting the resp. values
Diagnoses are sets of behavioural modes not containing any conflict.

Model-Based Diagnosis: Base functionality

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 13

Model-Based Diagnosis: Base functionality
Example why the adder/multiplier example does not reveal
all difficulties for practice:

L1 L2 L3 B

Observation:

GDE diagnoses:
1. (B ok, L1 faulty, L2 faulty, L3 ok)

2. (B faulty, L1 ok, L2 ok, L3 faulty)

L1, L2 are not lit, L3 is lit

???
3. (B faulty, L1 ok, L2 ok, L3 ok) ???

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 14

Conclusion from this modeling:

There is no logic contradiction to the following diagnosis:
2. (B faulty, L1 ok, L2 ok, L3 faulty)

Even worse:
If a behavioural rule is only evaluated when its antecedents
assume actual values, then no contradiction can be found to the
following diagnosis:

Reason:
L3 may be lit in fault mode even if there is no voltage difference.

Incomplete knowledge base !

3. (B faulty, L1 ok, L2 ok, L3 ok)

Reason:
There is no voltage value computed anywhere in the system.

Incomplete inference ability of the problem solver !

Model-Based Diagnosis: Base functionality

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 15

Additional rules for the exclusion of diagnoses 2 / 3:

Lamp:
a1 a2 z

faulty ∧ (a1 = supply voltage) ∧ (a2 = supply voltage) ⇒ (z = dark)
faulty ∧ (a1 = ground) ∧ (a2 = ground) ⇒ (z = dark)

There must be models for faulty behaviour, too, in order to exclude
diagnoses that are physically impossible.

Battery:

faulty ⇒ (minus = ground)

minus plus

Model-Based Diagnosis: Base functionality

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 16

Base functionality:

• Setting certain control inputs
Input:

• Observing values depending on this setting

Output:
• Several diagnoses of the following kind:

What does the user need ?

Input: see above

Output: • A unique instruction how to repair which component

- Jeach diagnosis assigns a behavioural mode to each component:
ok or a defined fault mode

- The rules of all behavioural modes assigned agree with all set and
observed values.

Model-Based Diagnosis: Extended functionality

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 17

Extended functionality:

• Setting certain values at certain places in the system

1) Suggestion of setting certain control inputs

(such that the observations to be expected differ such that the
diagnoses valid so far may be distinguished best)

2) Suggestion of observation points
• Selecting observation points

(such that the observations to be expected differ such that
the diagnoses valid so far may be distinguished best)

Test

Requirement for the modeling:
• Definition of test points

• Definition of test values to be set at the test points

• Definition of observation points to be measured

Control
actions

Observations

Model-Based Diagnosis: Extended functionality

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 18

Modeling the components in a proper way
Behavioural modes

Variables

Ports

• containing values
• The variable values are used in the constraints.
• The constraints compute new values for other variables.

• containing variables to be identified at the connections
to adjacent components

Distinguish
internal variables
from port variables !

Control actions Observations

• modes of the component to be searched for in the diagnostic process

Constraints
• set of behavioural rules connecting the variables of the same component
• Normally, a constraint is only valid under the assumption of

a certain behavioural mode.

• Domain of definition must be finite (normall less than 10 values)

• variables and values to be set • variables

• measure of accessibility and the difficulty to
set certain values.

• measure for accessibility

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 19

Modeling a simple electric circuit in a proper way

L1 L2 L3 B

component types: Battery
Lamp
Wire
Junction (3)

ports

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 20

Battery fault modes:
+

_

discharged

contact gap at +

contact gap at -

loose contact at +

loose contact at -

corroded

control actions: open connector at +

open connector at -

close connector at +

close connector at -

observations:
measure voltage at +

measure voltage at -

inspect connectors

Modeling a simple electric circuit

ports: +, -

constraints:
cf. slides 10, 15

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 21

Lamp
a1

a2

fault modes:

control actions: remove lamp

insert lamp

observations: inspect lamp

broken

shorted to ground

shorted to voltage

corroded

Wire fault modes:

observations:

control actions:

a1 a2

inspect wire

measure voltage at a1

measure voltage at a2

blown

loose contact

lamp is not inserted

corroded

Modeling a simple electric circuit

ports: a1, a2

constraints:
cf. slides 11, 15

internal variables: z

z

ports: a1, a2

constraints:
cf. slides 10

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 22

Junction (3)

fault modes:

control actions:

observations: inspect contacts

a1

a2

a3

contact gap at a1

loose contact at a1

contact gap at a2

contact gap at a3

loose contact at a2

loose contact at a3

close contact at a1

close contact at a2

close contact at a3

open contact at a1

open contact at a2

open contact at a3

Modeling a simple electric circuit

ports: a1, a2, a3

constraints:
exercise

(related to wires)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 4:

Knowledge-Based Systems

4.3: Model-Based Reasoning
Details

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 2

Model-Based Diagnosis (MDS)
Terminology of the GDE approach:
Component:

Unit of which behaviour should be classified („diagnosed“)

Behavioural mode:
represents a specific behaviour of all components of that type

usually enumerated from 1 to n

Component type:
collects components of same behaviour

usually enumerated from 1 to k:
1 represents ok
2 thru k are the fault modes (ordered by probability)

(Diagnosis) Candidate:
Assignment of exactly one behavioural mode to each component of the system

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 3

Model-Based Diagnosis (MDS)
Terminology of the GDE approach:
Candidate:

(2 1 3 1 1 2 1) means: Component Nr. 1 is in behavioural mode 2
Component Nr. 2 is in behavioural mode 1
Component Nr. 3 is in behavioural mode 3
Component Nr. 4 is in behavioural mode 1
Component Nr. 5 is in behavioural mode 1
Component Nr. 6 is in behavioural mode 2
Component Nr. 7 is in behavioural mode 1

Conflict:
Assignment of exactly one behavioural mode to some components of the system

(0 1 0 0 0 2 0) means: Component Nr. 2 is in behavioural mode 1
Component Nr. 6 is in behavioural mode 2
About the other components no proposition is made.

Interpretation: It is not consistent that component 2 is in behavioural mode 1 and
 und component 6 is in behavioural mode 2.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 4

Model-Based Diagnosis (MDS)
Terminology of the GDE approach:
Diagnosis (= consistent candidate):

Candidate not containing any conflict
Examples: (2 1 3 1 1 2 1) contains the conflict (0 1 0 0 0 2 0), i.e., it is not a diagnosis.

If (0 1 0 0 0 2 0) is the only conflict, then (1 1 1 1 1 1 1) is a diagnosis.
If (0 1 0 0 0 2 0) and (1 1 0 0 0 0 0) are the only conflicts, then (1 2 1 1 1 1 1)
is a diagnosis

Preference between candidates:
A candidate A is preferred to another candidate B, if A assigns at most the number
of the behavioural mode of B for each component.
Example: (1 1 1 1 1 1 1) is preferred to (1 2 1 1 1 1 1)

Maximum preferred diagnosis:
A diagnosis is called a maximum preferred diagnosis, if all preferred candidates
contain conflicts, i.e. the diagnosis is maximum with respect to the preference relation.

If (0 1 0 0 0 2 0) and (1 1 0 0 0 0 0) are the conflicts, then (1 2 1 1 1 1 1) and
(2 1 1 1 1 1 1) are the only two maximum preferred diagnoses.

Example:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 5

Model-Based Diagnosis (MDS)
Goal of MDS (Daimler enhancement of the GDE):
1) Base functionality: Find the best diagnoses

2) Extended functionality: Repair instruction:
Propose actions and tests in order to distinguish between diagnoses
found in 1)

Details of 1): Find the maximum preferred diagnoses.
If there are too many maximum preferred diagnoses,
the focus should be restricted to the most probable ones
among all maximum preferred diagnoses.
The remaining maximum preferred diagnoses are to be
marked as pending and may be inserted into focus at a later
time.

Possible focus restriction policies (may be combined):

a) Determine a maximum number of focus diagnoses

b) Determine a probability threshold for the gap between
focus diagnoses and pending diagnoses.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 6

Model-Based Diagnosis (MDS)
Algorithm for finding the most probable maximum preferred diagnoses
(Problem 1):

1. Update the focus candidates: Initialise with 11….1.
At later stages, pending candidates may be dragged into focus.

2. Generate and propagate all values resulting from behavioural
modes of candidates in focus.

3. Find the minimal conflicts from the propagated values.

4. Exclude the candidates containing conflicts and compute new
maximum preferred candidates not containing any conflict.

5. If focus is sufficiently large, the goal is achieved.
Otherwise continue with 1.

focus update

In reality, steps 2 thru 4 are implemented concurrently.
(achieved by event oriented programming)
In the following, the methods for candidate generation and conflict generation are described
separately.

value propagation

conflict generation

candidate generation

focus test

diagnoses

At any time, all candidates of the focus are maximum preferred.

no
con-
flict

conflicts
found

Diagnostic cycle

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 7

INPUT:
• Old conflicts and all maximum preferred und consistent

diagnoses for these conflicts

• New conflicts

OUTPUT:
• Set of maximum preferred candidates being consistent

for the new conflicts, too

MDS: Candidate generation

Embedding the candidate generation into the diagnostic process:
• Output of candidate generation will be taken as input in the next diagnostic cycle.

• Value propagation may find new conflicts.

• New conflicts may kick out diagnoses from focus.

• If no new conflicts are found, the diagnostic process is finished.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 8

111

211 121 112

311 221 212 131 122 113

231 312 321 222 213 132 123

331 322 232 313 223 133

332 323 233

333

MDS: Preference web of candidates

Example: 3 components
 3 behavioural modes for each of the components

preference

maximum preferred candidate

minimum preferred candidate

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 9

111

211 121 112

311 221 212 131 122 113

231 312 321 222 213 132 123

331 322 232 313 223 133

332 323 233

333
consistent or
inconsistent
candidates

inconsistent
candidates
only

consistent candidate
(= diagnosis)
maximum preferred
consistent candidate
(= maximum preferred
diagnosis)

New conflicts: 001, 110, 020

Successors of
some maximum
preferred diagnosis

No successor of
any maximum
preferred diagnosis

MDS: Preference web of candidates

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 10

111

211 121 112

311 221 212 131 122 113

231 312 321 222 213 132 123

331 322 232 313 223 133

332 323 233

333

Former maximum preferred diagnoses: { 212, 132 }
New maximum preferred diagnoses (stage 1): { 222, 213, 132 }
New maximum preferred diagnoses (stage 2): { 213, 132 }

MDS: Candidates update

Old conflicts: 001, 110, 020

New conflict: 012
consistent candidate
(= diagnosis)
maximum preferred
consistent candidate
(= maximum preferred
diagnosis)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 11

1) Consistency check of all maximum preferred diagnoses

2) Removal of all candidates proven to be inconsistent

3) Generation of the preference successors of each candidate just removed

4) Adopting the preference successors satisfying the following conditions:

• The successor is not preferred by a different consistent diagnosis.

• The successor is consistent itself.

Actions at detection of a new conflict:

MDS: Candidates update

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 12

3) Generation of the preference successors of each candidate just removed:

Remark: This restricted method does not skip any eventual diagnosis

• If C is a conflict contained in an old diagnosis, then generate only
successors of C changing the behavioral mode of just one component
contained in C.

 (Generation of direct successors only, directly referring to conflict C)

• If one of the direct successors contains a conflict C’, then do not generate
this successor, but rather all successors referring directly to C’.

Each successor diagnosis not containing C is successor diagnosis
of a direct successor not containing C

Prop.:

Actions at detection of a new conflict :

MDS: Candidates update

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 13

• Conflicts are only relevant, if they may eventually remove a successor of a presently
maximum preferred diagnosis.

• For the consistency test, only consider relevant conflicts: Each diagnosis d stores the
relevant conflicts. Any successor of d will only be checked for the conflicts of d’s list.

conflict: 0 2 2 2 0 2 2 0 2

candidate: 3 1 2 2 1 1 1 1 3

relevant ?

Eliminating irrelevant conflicts:

Examples for relevant conflicts:

MDS: Optimising the candidate generation

Mathematical criterion for the relevance of a conflict
(easy to check!)

 A conflict c is relevant for a diagnosis d if for all components holds:
c either assigns no mode (0) or a mode at least as high as the mode in d.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 14

conflicts:
{001, 110, 020}

relevant conflicts for:
• 212: 020
• 132: none

111

211 121 112

311 221 212 131 122 113

231 312 321 222 213 132 123

331 322 232 313 223 133

332 323 233

333
Consistent or
inconsistent
candidates

Inconsistent
candidates
only

Eliminating irrelevant conflicts:

MDS: Optimising the candidate generation

This means that 001 and 110 will never be checked again!

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 15

The Daimler product MDS contains a lot of further optimisations for
accelerating the candidate generation process which are not
mentioned here.

MDS: Optimising the candidate generation

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 16

MDS: Conflict generation

What is a conflict ?
• Assignment of exaclty one behavioural mode resp. to some components of a system

• Logically, a conflict is a disjunction of negative literals.

• Comparing: Logically, a diagnosis is a conjunction of positive literals.

How is a conflict generated?
• by values contradicting each other

• The contradicting values are backed by different assumptions.

• Then one of the assumptions must be false.

Candidate generation solves the following task:
• Given a set of conflicts: Find the most probable maximum preferred diagnoses

taking into account those conflicts.

• This reduces the problem of finding the best diagnosis to the following task: Find the
set of conflicts !

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 17

TMS: Truth Maintenance System

Objects of a TMS:

Justification:
A1 ∧ A2 ∧ ... ∧ An ⇒ C where A1, A2, ... , An , C are propositional nodes
A1, A2, ... , An are the antecedents of the justification
C is the conclusion of the justification

Propositional node:
Represents an arbitrary proposition (may be true or false)

Contradiction node (⊥):
represents a proposition which holds by no means

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 18

A

s

q r p

E D C B

t

J6

J4

J5

J3 J2 J1

TMS: Truth Maintenance System

Propositional nodes

Justifications

Justification

Justification

From the combination of propositions,
a justification makes a new proposition.
The antecedents of a justification are to be considered as conjunction.

Propositional nodes

Propositional node

Propositional node

antecedents

conclusion

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 19

ATMS: Assumption-based Truth Maintenance System

Additional functionality of an ATMS:
 An ATMS works with several assumption sets in parallel: A (context) environment is

the set of assumptions that should hold at the same time, but there may be different
such environments holding alternatively.

1) The propositions are assigned with the assumption environments under which they
must hold.

2) The ATMS propagates these assumtion environments over the justifications and
determines which other propositions must hold then as well.

3) In particular, the environments of the contradiction node reveals which enviroments
are contradictory.

Functionality of a general TMS:
1) Certain propositional nodes are considered true (beliefs).

2) TMS determines by propagation of these assumptions via the justifications which
other propositions must also hold then.

3) In particular, if the contradiction node must hold, then the assumptions must be
contradictory.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 20

Example for applying an ATMS

Wire

p1

z2
2 3 4 1

5 6 7

8 9 10

Wire Wire

Wire Wire Wire

Battery Lamp Lamp Lamp

+

-

z3 z4

p2 p3 p4

m1 m2 m3 m4

Behavioural modes:
Mode 1 for all component types: normal behaviour
Modus 2 for all component types: unique fault mode

Modus 2 ⇒ (z = dark)

Modus 2 ⇒ (minus = ground voltage) Battery:
Lamp:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 21

Example for applying an ATMS

p: p4 = supply voltage

A: Component 4 is ok

p

f

s
r

B q
A

q: m4 = ground voltage

r: z4 = lit

B: Component 4 is faulty

s: z4 = dark

f: ⊥ (contradiction)

(0 0 0 1 0 0 0 0 0 0)

(0 0 0 2 0 0 0 0 0 0)

(0 0 0 2 0 0 0 0 0 0)

(1 0 0 0 1 1 1 0 0 0) (1 0 0 0 0 0 0 1 1 1)

(1 0 0 1 1 1 1 1 1 1)

(0 0 0 0 0 0 0 0 0 0)

(0 0 0 2 0 0 0 0 0 0)

environment

u: z3 = dark

u

(0 0 0 0 0 0 0 0 0 0)

x: p4 = ground voltage
v: m3 = ground voltage

w: p3 = ground voltage
D: Component 7 is ok

v

(1 0 0 0 0 0 0 1 1 0)

C: Component 3 is ok

C

w D

x

(0 0 1 0 0 0 0 0 0 0)

(0 0 0 0 0 0 1 0 0 0) (1 0 1 0 0 0 0 1 1 0)

(1 0 1 0 0 0 1 1 1 0)

(1 0 1 0 1 1 1 1 1 0) y: p3 = supply voltage

y

(1 0 0 0 1 1 0 0 0 0)

(1 0 1 0 1 1 0 1 1 0)

conflicts

not minimal
Definition:
A conflict is not
minimal if it
contains another
conflict as subset.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 22

Terminology of ATMS:

Environment:
Context of assumptions: Conjunction of assumptions, under which a proposition
holds (if all assumptions of this environment are valid)

conflict (nogood):
Environment of the label of the contradictory node

Propositional node:
The propositional nodes distinguish between normal propositions and assumptions,
i.e. the class of assumption nodes is a specialisation of propositional nodes.

Label:
Set of different environments for a propositional node. Different
environments need not be consistent to each other. The proposition holds
already under the disjunction of the environments.

ATMS: Assumption-based Truth Maintenance System

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 23

Application of an ATMS for model-based diagnosis:

Justification:
Environment:

Concurrent (conjunction) assignment of behavioural modes to components under which a
proposition would hold. The assignment need not be complete, i.e. it is an arbitrary
candidate (like in a conflict).

For assumption nodes: Assignment of a behavioural mode to exactly one component

conflict (nogood):
Environment of the label of the contradictory node: Assignment of behavioural modes to
components of which at least one must be faulty.

Propositional nodes:
1) „Normal“ nodes: Assignment of a certain value to a certain position (variable) in

the system

2) Assumption node: Assignment of a behavioural mode to a component

Application of a generic behavioural rule to actual values

This enables the same notation and meaning of conflicts as in the
terminology of the GDE.

ATMS: Assumption-based Truth Maintenance System

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 24

p

r

q

Label update in an ATMS

Interpretation of labels:

Env P1

Env P2

Env Q1

Env Q2

Env (P1 ∧ Q1)

Env (P1 ∧ Q2)

Env (P2 ∧ Q1)

Env (P2 ∧ Q2)
• Several environments of a label for a node are

treated as disjunction: The proposition holds when
at least one of the environments is true.

Elimination of redundant environments:
• Contradictory environments may be removed.
• This enables the removal of all environments containing conflicts.
• Environments implying other environments of the same label may be omitted as well.

Label of p

Label of r

Label of q

Interpretation of justification:
• r holds when q and r are true

(conjunction)

• When environment e belongs to the label of node n,
this means: e ⇒ proposition of n

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 25

User interface of an ATMS
Input of problem solver:

• Assumption nodes
• “Normal” nodes
• Justifications between the nodes

(they must be obtained from the component library applied to actual values)

Output to the problem solver:
• Set of minimal conflicts (Definition of minimality on slide 21)

The ATMS performs automatically:
• Generation of labels for the assumption nodes
• Update of labels for all conclusions where the label of

some antecedent has changes.
• Elimination of redundant environments

These are a lot of operations !

• Certain environment assignments to normal nodes,
e.g., observations or other premises as (0 0 ... 0)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 26

Candidate generator uses the ATMS as follows:
• Generate all assumption nodes for the focus diagnoses
• Value propagation (simulation):

Compute all values resulting from assumptions of the focus diagnoses,
generate the respective propositional nodes und justifications,
plug this into the ATMS.

• Ask the ATMS for the new conflicts.

User interface of an ATMS

Output to the problem solver:
• Set of minimal conflicts

Input of problem solver:
• Assumption nodes
• “Normal” nodes
• Justifications between the nodes

(they must be obtained from the component library applied to actual values)
• Certain environment assignments to normal nodes,

e.g., observations or other premises as (0 0 ... 0)

This is done by a
separate module
called Value
Propagator (VP)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 27

Separation of value propagation (VP) and ATMS:
• The ATMS is responsible for propagation of environments in a given

network with already determined value dependencies.

Value propagation and ATMS

• The propagation of values is performed by a rule propagator (VP) which
generates justifications for actual values from the generic values of the
behavioural modes of the components. Thus, VP generates the network
of value dependencies required by the ATMS.

What is propagation in general ?
• Propagation is the distribution of information in a network made of

nodes and edges

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 28

ATMS

KRM rules

VP Inference (Value propagation)
• Execute rules (when antecedents are in focus)
• Build ATMS Network

Propagation System

Activate rules whose
antecedents are now
in focus

• Input of nodes and justifications
• Marking already existing nodes

which may be antecedents in
rules not executed yet

Focus update

conflicts

Value propagation and ATMS

Knowledge Base
(Component models plus
system connectivity)

KRM:
Knowledge Representation Manager

Candidate
Generator

Focus
update

In optimised candidate generators and ATMS’s the interface is more complicated.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 29

What is the benefit of separating value propagation and ATMS?

• Values are generated mostly from observations (measurements) and
intended actions. This is not frequent, thus, there are not many values
to be considered.

Value propagation and ATMS

• Environments are generated from assumptions about behavioural
modes. Of such constructs there exist a lot of (even at single faults at
least as many as there exist components).

• This makes the update of focus environments much more often to occur
than the computation of new values. The update of focus environments
may be considered an ATMS internal problem

 Better software architecture by modularisation

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 30

KRM

ATMS

VP
Inference

Candidate
Generator

Inputs &
Observations

Propagation System ACS System

Interaction of candidate generator, RP and ATMS

ACS: Assumption-based Constraint Solver

Knowledge
base

Dialogue Component
diagnoses

Problem Solver

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43Details 31

What does the knowledge base
have to provide to the inference
component (problem solver)?

• Rules for the relations of values in
each behavioural mode
(component models)

Requirement to the knowledge base

KRM

VP
Inference

Knowledge
base

• Knowledge about the value
domains:
When are two values considered
contradictory?

ATMS

Daimler‘s MDS solves these requirements by offering a
constraint language for component models.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 4:

Knowledge-Based Systems

4.4: Machine learning (Case-Based Reasoning)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 2

• Cases with complete symptom vector and associated faults (classified unambiguously)

Input to knowledge base:

• Similarity measure for incomplete symptom vectors (often weighted between different
types of symptoms)

• Points in vector space

• Similarity measure

Structure of knowledge base:

Job of inference engine:
• For a new vector given, find the most similar symptom vector of the knowledge base.
• Assign the same fault to the new vector as associated to the reference vector in the

knowledge base (possibly with a probability value).

a) Classical AI, with similarity measure:

Case-Based Diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 3

• Neural network with input layer (for symptom vector) and output layer (for faults)
and (optionally) intermediate layer of nodes and edges, marked by variable weights.

• Points in vector space

• Neural network with clearly defined weights
(dependent on trained symptom vectors and associated faults)

Structure of knowledge base:

Job of inference engine:
• Apply new symptom vector to the input layer of the network.
• Read the associated fault from the output layer.

b) with neural networks:

Case-Based Diagnosis

• Cases with complete symptom vector and associated faults (classified unambiguously)

Input to knowledge base:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 4

Generalisation of case-based diagnosis to arbitrary
case-based reasoning strategies:

Machine Learning (Case-Based Reasoning)

• Given cases as vectors (complete symptom vectors): These are “learnt” and build the
knowledge base.

Principle (also called supervised learning):

• Given new vectors, of which not all parameters are known (incomplete symptom vectors):
These are to be classified.

• Assign values to the unknown parameters.

Job of inference engine (simple variant):
• For the new vector, find the closest symptom vector learnt by the knowledge base.

• For the unknown parameters of the new vector, assign the same values as in the associated
symptom vector learnt by the knowledge base.

This variant only makes sense when the unknown values come from a
discrete (better finite) domain !

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 5

Improvement for continuous value domains:
Job of inference engine (better variant):
• For the unknown parameters of the new vector, assign values “in between” values of

“nearby” symptom vectors learnt by the knowledge base.

Other mathematical formulation of this method:
• Consider the unknown parameters of the new vectors as function values of the known

parameters: Find a continuous function where all vectors learnt by the knowledge base are
contained.

• Of this function, assign the function values of the known parameters to the unknown
parameters.

• Take a class of functions, each function differing by certain parameters.
• Determine the parameters solving an equation system obtained from the known reference

vectors.

How do we get an appropriate function for a given set of
reference vectors?

Query:

Answer:

Machine Learning (Case-Based Reasoning)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 6

Distinguish between training errors and test errors:
Fixing the polynomial degree for the classification function f will make it impossible
that all training examples solve the function f correctly.

 training error

Taking a too small degree for the classification function causes underfitting:

Optimisation goal: Make the training error as small as possible.

Once, a classification function is chosen,
this function will classify the test examples.

Optimisation goal: Make the test error not much bigger than the training error,
 i.e. minimise the expected difference between test error and training error.

Taking a too high degree for the classification function causes overfitting:

 test error

graphics from deeplearning book, Goodfellow et al.

Machine Learning (Case-Based Reasoning)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 7

Determining parameters in function classes (regression):

Linear regression:
• Find the weights in a linear function of the form:

Generalisation:

2. Find the weights in equation systems of higher order.
3. Find the weights in parametrised inequality systems.

1. Find the weights in a linear equation system.

• Case-based reasoning is designed for systems which cannot be
modeled easily.

• This is why a higher order equation system does not make sense.

• It is better to work with many weakly connected equation systems and
distribute the unknown knowledge.





n

i

iin xwxxxf
1

21),,,(

Machine Learning (Case-Based Reasoning)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 8

Idea of neural networks:

Input values

Output values

• The weights may be preset but are adapted to the examples learnt.

weights weights

weights

weights

weights

weights

x1
x2

x3

fGiven a multi-valued function (notation:)),,,(21 ni xxxf 

),,(3211 xxxf

),,(3212 xxxf

• Function values of new inputs are obtained applying the neural network.

Neural Networks

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 9

Functionality of a single neuron:

e1

en

a1

am weights Wi,j





n

j

jjini eweeea
1

,21),,,(

Neural Networks

• A = (a1, …, am) is a linear function in the e’s. A is represented by an (m x n)-matrix of the wij’s.

∙

∙

∙

∙

∙

∙

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 10

Functionality of a single neuron:

e1

en

a1

am weights Wi,j

Neural Networks

∙

∙

∙

∙

∙

∙

g














 



n

j

jjini ewgeeea
1

,21),,,(

• g is a generalised threshold function which is the same for all outputs of the same neuron.

• A = (a1, …, am) is a linear function in the e’s. A is represented by an (m x n)-matrix of the wij’s.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 11

Different layered neural networks:

Neural networks without intermediate layers:
• Neurons of the first layer accepting the inputs are connected to neurons of the second layer providing

the outputs.

Neural networks with intermediate layers (deep learning approach)
• Input and output layers are connected by further “hidden” intermediate layers.

• The term “deep learning” is usually only applied when there are at least two hidden layers.

Neural networks with feedback (Recurrent Neural Networks, RNN):
• Generation of “memory”

In standard neural networks, all neurons are placed on certain layers:
• There is an input neuron for each input variable and an output neuron for each output variable.

Thus, the input neurons represent linear (1,n) functions and the output neurons linear (n,1) functions.

• Neurons on the same layer have the same distance to input and output.

• Links are only existing between neurons of adjacent layers.

• By default, all neurons of a layer are connected to all neurons of the adjacent layers (one in input, one
in output direction). But this may change even dynamically during the learning process.

Neural Networks

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 12

Basic technique for adjusting the weights (modern approach):

Neural Networks

Initialisation of the weights of all neurons:

• Principally, arbitrary weights may be chosen.

• There may be specific initialisation heuristics for special types of networks.

• Forward propagation from input to output

• Comparison between predicted values and real values at the output

• For the error estimate (called „loss function“), different methods may be possible:
 e.g. means-squared, cross-entropy

• Backward propagation from output to input: Adjusting the weights considering this sample

For each (input, output) training sample:

„Backpropagation algorithm“ (Rumelhart, 1986)

Details and examples (including implementation) in:
Erik Genthe, „ Backpropagation in neural networks – explained at examples“ (in German), FH Wedel seminar presentation,
SS 2020, https://intern.fh-
wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2020SS/Seminar/Ausarbeitung3BackpropagationGenthe.pdf

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 13

Neural Networks

 Forward propagation from input to output:
• The input values are attached to the input layer.

• The output of each neuron is computed with the so far used weights successively (in the order how far
the neuron is apart from the input).

• This is repeated until the output layer has got all values.

Forward and backward propagation in detail:

Backward propagation from output to input:
• The output layer values are compared with the real output values of the sample, and the output error is

computed using the predefined loss function.

• For each neuron directly connected to the output layer, it is computed how much this contributed to the
output error. The more it contributed, the more the corresponding weight is changed.

• This is repeated towards the input layer, i.e. for each input xi of the latest layer considered (which is the
output of the previous layer considered), it is computed how much each neuron of the previous layer
contributed to xi.

• Note: The error should not be corrected to zero (danger of overfitting). This is compensated by a
learning rate factor <<1 which has to be multiplied with the optimum corrector.

• Important: There may be several ways to compute the amount of contribution of a neuron.

Basic technique for adjusting the weights (modern approach):

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 14

Neural Networks

 Gradient descent method (the most popular example for backward propagation):
• The impact of a weight to an error is computed by the partial derivative w.r.t. this weight of the error

function. The derivative of the function of a neuron corresponds linearily to the input by which the
weight is multiplied, but the error function may be nonlinear.

• The easiest formulae describe the impact of the weight of the output layer. Then the partial derivative is
rather simple.

• The impact of the weight of earlier layers is obtained by plugging in the dependency of later values
from previous weights. Then the derivative becomes more complicated and is highly nonlinear due to
the chain rule involving the weights of later neurons.

• If an activation function is involved in a neuron, this must also be considered in the descent function.
Then the derivative of the activation function must be considered as well.
Note: Typically, the activation function is not linear but of higher order or even exponential.

• Notation: The derivative of a multidimensional function w.r.t. all involved variables,
 is called the Nabla ∇ operator consisting of all single partial derivatives.

• If the function is multi-valued, the Nabla operator is a matrix consisting of the partial derivatives.

How to perform backward propagation:
Basic technique for adjusting the weights (modern approach):

Detailed desription with example also in:
Michel Belde, Bachelor thesis on „ Improvement of a consulting app for the sales department using image
recognition“, chapter 3.1, on class website (in German)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 15

Neural Networks

 Vanishing / exploding gradient problem:
• If gradients are close to zero, they accumulate in deep networks and vanish until input.

• This is mainly due to unfortunate activation functions.

• Deep networks need activation functions with a derivative not close to zero in all of the domain.

• If gradients are considerably higher than one, they accumulate in deep networks and may explode.

• Deep networks need activation functions with a derivative not much higher than one in all of the
domain.

Problems with backpropagation in deep networks:

Basic technique for adjusting the weights (modern approach):

Dennis Maas, „Specific methods for training and evaluation of deep neuronal nets”, FH Wedel seminar presentation, SS
2019 (in German),
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung3_TiefeNetze_Maas.pdf

More details in:
Jacob Hansen, „ Details of the backpropagation algorithm“, FH Wedel seminar presentation, SS 2019, http://intern.fh-
wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung1_Backpropagation_Hansen.pdf

Improvements for Backpropagation: Batches
• Consider a set of several input/output samples and feed them together in the network.

• The weights are then adjusted such that the average error is minimised.

http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung3_TiefeNetze_Maas.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung3_TiefeNetze_Maas.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung3_TiefeNetze_Maas.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung1_Backpropagation_Hansen.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung1_Backpropagation_Hansen.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung1_Backpropagation_Hansen.pdf

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 16

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 17

• corresponds to a single regression function.
The weights are in the individual input neurons.

• Unique output neuron has a step function only, no further weight.

• cannot compute XOR function (Minsky 1971).

• can be generalised for an n-m function having several outputs.

Types of Neural Networks

The first one: Perceptron (1957, Frank Rosenblatt)

Weight adjusting technique:
• does not apply backpropagation algorithm as described before.

• Applies Hebb‘s rule instead: Cells that fire together, wire together.

https://towardsdatascience.com
/the-mostly-complete-chart-of-
neural-networks-explained-
3fb6f2367464

Aurelien Geron: Hands-On
Machine Learning with SciKit Learn
& Tensorflow, O‘Reilly 2017

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 18

Deep Feed Forward Network

Types of Neural Networks

• uses backpropagation algorithm as described before
(proposed by Rumelhart 1986).

• can compute all logical functions.

• differs from Perceptron not only by internal layers,
but also by other activation functions than the step function.

• is nowadays used in a lot of standard learning settings.

https://towardsdatascience.com
/the-mostly-complete-chart-of-
neural-networks-explained-
3fb6f2367464

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 19

Recurrent Neural Network

• network with “memory”

• Recurrent neurons receive their own output as an
input with a delay.

• suitable for context dependent input: In which order
did data occur?

• With the use of simple neurons one can store the
order only, by more complicated “memory cells” one
can store past information for a given time.

• Rumelhart’s backpropagation algorithm can be
adapted when the network is unfolded for several time
stamps (only discrete time possible):
backpropagation-through-time algorithm

Types of Neural Networks

https://towardsdatascience.com
/the-mostly-complete-chart-of-
neural-networks-explained-
3fb6f2367464

More details in:
Marcello Attila Messina, „Weight adjustment in neural networks with memory”, FH Wedel seminar presentation, SS 2019 (in
German),
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf

http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf
http://intern.fh-wedel.de/fileadmin/mitarbeiter/iw/Lehrveranstaltungen/2019SS/Seminar/Ausarbeitung5_RNN_Messina.pdf

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 20

Deep Convolutional Network

• After the (pink) “convolutional layers”, the
(circled) “pooling layers” extract the
important features and neglect unimportant
ones.

• Unlike in other internal layers, neurons of
pooling layers are not connected to all
neurons of the adjacent layers.

• This is the modern standard for image
recognition and classification.

Types of Neural Networks

https://towardsdatascience.com/the-mostly-complete-chart-of-
neural-networks-explained-3fb6f2367464

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 21

Different Activation Functions

• The activation function of a neuron gets the input to that neuron and transforms this into a
new value which is really fed into that neuron (applying the weight function).

• It is customary to choose the same activation function for all neurons of a given network.

Neural Networks Techniques

From: Thimo Tollmien, Master thesis on „Optimisation of delay predictions with deep learning“, FH Wedel 2018

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 22

Special Improvement Techniques

Improvement by bias nodes
• Bias nodes are additional input nodes for each layer of the network. They are not

connected with the previous layer. So they feed in extra information.

• Usually they feed in an extra “1” per layer.

• This may help weight adjustment in the training period.

https://www.quora.com/What-is-bias-in-artificial-neural-network

Neural Networks Techniques

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 23

Dropout
• avoids overfitting

• Input vectors are fed into the network several times

• Each time a different set of randomly chosen connection is cut.

• If the avoidance of a connection does not increase the training error, then this connection
will be ommitted in the future.

Special Improvement Techniques

From: Thimo Tollmien, Master thesis on „Optimisation of delay predictions in public transportation with deep learning“, FH Wedel 2018

Neural Networks Techniques

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 24

Training Techniques

Feature selection
• Add or remove certain features (dimensions) of the training set.

Cross validation

The quality of a trained neural network decisively depends on the
quality of input samples and features it was trained with.

• Split the training set into two (or more) parts: Train only with one part and test the result
with the other. Do the same vice versa.

Neural Networks Techniques

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 25

Data mining (unsupervised learning)

Machine learning without known results

Given some data input. Is it possible to classify this input into different categories?

Different classification methods:

• Cluster detection

• Greatest gap detection

Common clustering techniques:

• nearest neighbor

• k-means (for k clusters)

Data mining is an own field with a rich variety of classification techniques. „Big data“

Learning in this context means: Continuous adaptation to changing data

From: Dirk Lützelberger, NXP, Colloquium talk
on Machine Learning FH Wedel 2018

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 26

Data mining (unsupervised learning)

Machine learning without known results

Given some data input. Is it possible to classify this input into different categories?

k-means details (basic method):

1) Decide for a certain number k and keep it fixed.

2) Select k arbitrary clusters and compute their means.

3) Determine the variance (sum of the square distances to the mean) for the clusters.

4) Reshuffle the k clusters, and repeat Step 3). Store the clusters with the respective minimum.

There are a lot of refinements for this method.

Note: As long as Step 1) is observed, k-means does not help to detect the „optimum“ k.

 Without Step 1) this method can be generalised to find an „optimum“ k.

Remark: The problem „Find the best arrangement of k clusters such that the distance to the respective
means is minimised“ is NP-hard (i.e. not likely to be computable efficiently)

5) Repeat Steps 3) and 4) until the minimum does not “considerably” improve.

x-means

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 27

Autoencoder

• suitable for unsupervised learning

• Input and output layers should have the
same number of neurons.

• Hidden layers should have fewer neurons
than input und output layers.

Types of Neural Networks

https://towardsdatascience.com
/the-mostly-complete-chart-of-
neural-networks-explained-
3fb6f2367464

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 28

Graduation theses in Machine Learning supervised by iw
Machine Learning in Practice

Tjark Smalla (WS 2016): Implementation of a Neural Network for Order Prediction and
Comparison with an Existing Logistic Regression
Otto GmbH

Lasse Karls (WS 2017): Graph-based feature extraction to improve machine learning in
predicting the business affiliation of a Signal Iduna customer,
Signal Iduna

Bronislav Koch (WS 2017): Determination of a set of clients with maximum probability
for project success in a multivariate model,
Sven Mahn IT GmbH

Michel Belde (WS 2018): Improvement of a consulting app for the sales department
using image recognition,
akquinet Engineering GmbH

Dennis Maas (SS 2019): Transformation invariant bar code recognition using neural networks,
Opus//G GmbH

Thimo Tollmien (SS 2018): Optimizations of Delay Predictions in Local Public
Transport Using Deep Learning,
Master thesis in cooperation with HBT

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 29

Graduation theses in Machine Learning supervised by iw
Machine Learning in Practice

Henning Brandt (WS 2019): Implementation of a model for calculating the concentration
of volatile organic compounds in a multi-capillary gas chromatograph using machine
learning,
bentekk GmbH / Dräger AG

Linus Stenzel (WS 2019): Development of an artificial intelligence with human play style
in the game Canasta,
LITE Games GmbH

Frederik Schnoege (SS 2020): Use of natural language processing in IT support,
Master thesis in cooperation with Beiersdorf Shared Services GmbH

Ines Kemsies (WS 2021): Prediction of system failures by using a recurrent neural network,
Akquinet engineering GmbH

Vincent Grohne (WS 2020): Comparison of different machine learning models for the
detection of potentially failed securities deliveries,
Berenberg Gossler KG (Bank)

Shwetha Mohan Kumar (WS 2021): Computation of delays in the public transportation
of Hamburg using Deep Neural Networks,
Master thesis in cooperation with HBT

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 30

Software Kits

SciKit Learn (http://scikit-learn.org)

Applying Neural Networks in Practice

Tensorflow (http://tensorflow.org)

• open-source library implemented in Python

• open-source library implemented in Python und C++

• developed at Google, used in internal software

From: Thimo Tollmien, Master thesis on „Optimisation of delay predictions in public transportation with deep learning“, FH Wedel 2018

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 31

References

Neural Networks

Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org

Aurélien Géron. Hands-On Machine Learning with Scikit-Learn & TensorFlow. O’Reilly, 2017.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 32

Support Vector Machines

Other modern ML techniques

• applies high dimensional vector algebra

• tries to find separating hyperplanes between different sets of classification

• may be regarded as follow-up of the classical approach

Literature: (available in our library in 8.5.3)

Nello Christianini / John Shawe-Taylor:: An Introduction to Support Vector Machines.
Cambridge Univ. Press, 2000 (2006).

Vojislav Kecman: Learning and Soft Computing. MIT Pr. 2001

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 33

What is the crucial difference between neural networks and
„classical“ CBR systems?

 Neural networks distribute the knowledge about the cases learnt.

• Arbitrariness of function class chosen does not play such an important role.

• Good neural networks need fewer training cases than classical CBR systems.

Theoretical advantages of distribution:

• Intransparent cases are handled by an intransparent method:
The distributed method is “self-adjusting”.

Practice shows:

• Neural networks provide better classification results.

• Deep networks made a great boost to AI in general: They are applied in products already.

Machine Learning (Case-Based Reasoning)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 34

Summary: Machine Learning (Case-Based Reasoning)

Advantages and Disadvantages:

• The method is simple.

- The diagnosis of the run time component is very fast.

- Knowledge acquisition can easily be automatised.

- The knowledge base consumes a lot of storage (classical approach only).

- The knowledge base can only be generated for systems where
experience is given.

Let‘s get back to our sample application diagnoses for comparing
different KBR methods:

+

+

−

−

FH Wedel Prof. Dr. Sebastian Iwanowski AAI44 slide 35

Advantages and Disadvantages:

- Each run time diagnosis may be wrong.

• The knowledge base does not contain any other structural
knowledge than the similarity measure or the NN.

- Similarity measure and neural network are arbitrary.

- Even with a small change of the system, the knowledge base cannot be used reliably.

- All application domains are equally suited.

- The same inference engine may be applied for totally different application domains.

- The result is not justifiable (at least for neural networks): Distrust “algorithms”.

- For systems without a reasonable model, classification results are rather good
(at least for neural networks).

+
+
+

−

−

−

−

In this context, „algorithms“ denote
statistical algorithms for backpropagation
plus the network design.

This is not to be confused with algorithms
outside AI or algorithms for symbolic
(rule-based) AI.

Summary: Machine Learning (Case-Based Reasoning)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski
FH Wedel

Chapter 4:

Knowledge-Based Systems

4.5: Concluding Comparison of the Different Reasoning
Techniques

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 2

Run time system:

Application from practice: Technical diagnosis

Input:

Output:

(knowledge-based systems call this problem solver / inference engine)

This is where diagnostic systems do not differ !

• Setting certain control inputs
• Observing values depending on this setting

• A unique instruction how to repair which component

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 3

Knowledge-based diagnosis:

1) Knowledge acquisition: Input into knowledge base

2) Knowledge structure
• depends on knowledge acquisition

• model-based

This is where diagnostic systems may differ !

• symptom-based (rule-based)

• case-based (machine learning)

3) Knowledge processing be the problem solver
• depends on knowledge structure

as alternatives

Application from practice: Technical diagnosis

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 4

• Causing and manifest faults for the overall system

Input to knowledge base:

• Possible symptoms (measurements)
• Relations between faults and symptoms (rules)

• Semantic network (e.g.,fault networks, decision trees)

Structure of knowledge base:

This is „classical“ expert system technology

1. Symptom-Based Diagnosis

Job of inference engine:
• Navigation in semantic network

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 5

• system model: hierarchical structure of the system (+ how the components are connected)

Input to knowledge base:

• component models

• constraint network (assembled automatically)

Structure of knowledge base:

2. Model-Based Diagnosis
Goal:
• fast knowledge acquisition

• exact and provable solution of problem solver

Job of inference engine:
• GDE approach: conflict-based candidate generation

• sophisticated acceleration techniques in order to get resonable run time behaviour
(only discussed for candidate generation, others not discussed in class)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 6

• Cases with complete symptom vector and associated faults (classified unambiguously)

Input to knowledge base (supervised approach only):

• Similarity measure for incomplete symptom vectors (often weighted between different
types of symptoms)

Job of inference engine:

• For a new vector given, find the most similar symptom vector of the knowledge base.
• Assign the same fault to the new vector as associated to the reference vector in the

knowledge base (possibly with a probability value).

a) Classical AI, with similarity measure:

3. Case-Based Diagnosis (Machine Learning)

Structure of knowledge base:

• Neural network with input layer (for symptom vector) and output layer (for faults)
and (optionally) intermediate layer of nodes and edges, marked by variable weights.

b) with neural networks:

a)

b) • Apply new symptom vector to the input layer of the network.
• Read the associated fault from the output layer.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 7

 heuristic:
if <features> then <solution>

(usually the solution has got disjunctive alternatives,
 in modern systems this may be combined with probabilities)

 causal:

• overlapping classification:
 if <solution> then <features>

• structural classification:
local behavioural model => system function

(search for the best behavioural models being consistent with the
observed overall system behaviour)

Systematic classification of inference techniques

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 8

 case-based (machine learning approach):

 Given cases with features and solution
 Apply regression technique (interpolation)

• with similarity measure:
arbitrary regression

• in neural networks
distributed linear regression

• in data mining (unsupervised approach):

features from knowledge base => new correlations

Supplementary, apply one of the other methods (heuristic or causal)

Systematic classification of inference techniques

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 9

rule-based
reasoning

model-based
reasoning

case-based
reasoning

Classification of knowledge-based inference by depth

knowledge about domain flat deep

• heuristic

• causal

• case-based (similarity measure, neural network, data mining)

for flat and deep knowledge

for relatively flat knowledge

for very flat knowledge

In principle, this may be arbitrarily combined with other dimensions of knowledge quality:

Systematic classification of inference techniques

• certain vs. uncertain (consider the probability of a statement)

• exact vs. fuzzy (consider the accuracy of a statement)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI45 slide 10

Concluding comparison for applicability in practice
symptom-based case-based model-based

fast run time component ++ ++ o

fast knowledge acquisition o ++ +

fits to systems
of complex structure -- ++ ++

fits to systems containing
complex components + ++ --

reusability of knowledge o -- ++

fits to diagnosis of unknown
faults - a) -- b) - +

is readily available at
product launch o a) -- b) - ++

provable reliability of
diagnoses + a) o b) -- ++

Interview about comparison causal knowledge vs. probabilistic knowledge:

https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/

